12-6 决策树解决回归问题
代码实现
import numpy as np
from sklearn import datasets
boston = datasets.load_boston()
x = boston.data
y = boston.target
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=666)
from sklearn.tree import DecisionTreeRegressor
dt_reg = DecisionTreeRegressor()
dt_reg.fit(X_train, y_train)
dt_reg.score(X_test, y_test) # 0.6872676909790005
dt_reg.score(X_train, y_train) # 1.0Last updated
