📔
liu_yu_bo_play_with_machine_learning
  • README
  • src
    • Introduction
    • Summary
    • Chapter10
      • 第十章:评价分类结果
    • Chapter10
      • 10-2 精确率和召回率
    • Chapter10
      • 10-3 实现混淆矩阵、精准率、召回率
    • Chapter10
      • 10-4 F1 score
    • Chapter10
      • 10-5 Precision-Recall平衡
    • Chapter10
      • 10-6 precision-recall曲线
    • Chapter10
      • 10-7 ROC曲线
    • Chapter10
      • 10-8 多分类问题中的混淆矩阵
    • Chapter11
      • 11-1 什么是支撑向量机
    • Chapter11
      • 11-2 支撑向量机的推导过程
    • Chapter11
      • 11-3 Soft Margin和SVM的正则化
    • Chapter11
      • 11-4 scikit-leran中的SVM
    • Chapter11
      • 11-5 SVM中使用多项式特征
    • Chapter11
      • 11-6 什么是核函数
    • Chapter11
      • 11-7 高斯核函数
    • Chapter11
      • 11-8 scikit-learn中的高斯核函数
    • Chapter11
      • 11-9 SVM思想解决回归问题
    • Chapter12
      • 第十二章:决策树
    • Chapter12
      • 12-2 信息熵
    • Chapter12
      • 12-3 使用信息寻找最优划分
    • Chapter12
      • 12-4 基尼系数
    • Chapter12
      • 12-5 CART和决策树中的超参数
    • Chapter12
      • 12-6 决策树解决回归问题
    • Chapter12
      • 12-7 决策树的局限性
    • Chapter13
      • 第十三章:集成学习和随机森林
    • Chapter13
      • 13-2 soft voting
    • Chapter13
      • 13-3 bagging和pasting
    • Chapter13
      • 13-4 更多关于bagging的讨论
    • Chapter13
      • 13-5 随机森林和extra-trees
    • Chapter13
      • 13-6 ada boosting和gradiesnt boosting
    • Chapter13
      • 13-7 Stacking
    • Chapter4
      • KNN - K近邻算法 - K-Nearest Neighbors
    • Chapter4
      • 4-1
    • Chapter4
      • 4-2
    • Chapter4
      • 4-3 训练数据集,测试数据集
    • Chapter4
      • 4-4 分类准确度
    • Chapter4
      • 4-5
    • Chapter4
      • 4-6 网格搜索
    • Chapter4
      • 4-7
    • Chapter4
      • 4-8 scikit-learn中的Scaler
    • Chapter4
      • 4-9 更多有关K近邻算法的思考
    • Chapter5
      • 线性回归算法
    • Chapter5
      • 5-1
    • Chapter5
      • 5-10 线性回归的可解释性和更多思考
    • Chapter5
      • 5-2 最小二乘法
    • Chapter5
      • 5-3 简单线性回归的实现
    • Chapter5
      • 5-4 参数计算向量化
    • Chapter5
      • 5-5 衡量线性回归算法的指标
    • Chapter5
      • 5-6 最好的衡量线性回归法的指标 R Squared
    • Chapter5
      • 5-7 简单线性回归和正规方程解
    • Chapter5
      • 5-8 实现多元线性回归
    • Chapter5
      • 5-9 scikit-learn中的回归算法
    • Chapter6
      • 第六章:梯度下降法
    • Chapter6
      • 6-2 模拟实现梯度下降法
    • Chapter6
      • 6-3 多元线性回归中的梯度下降法
    • Chapter6
      • 6-4 在线性回归模型中使用梯度下降法
    • Chapter6
      • 6-5 梯度下降的向量化
    • Chapter6
      • 6-6 随机梯度下降
    • Chapter6
      • 6-7 代码实现随机梯度下降
    • Chapter6
      • 6-8 调试梯度下降法
    • Chapter6
      • 6-9 有关梯度下降法的更多深入讨论
    • Chapter7
      • 主成分分析法 PCA Principal Component Analysis
    • Chapter7
      • 7-1
    • Chapter7
      • 7-2 使用梯度上升法求解主成分分析问题
    • Chapter7
      • 7-3 代码实现主成分分析问题
    • Chapter7
      • 7-4 求数据的前N个主成分
    • Chapter7
      • 7-5 高维数据向低维数据映射
    • Chapter7
      • 7-6 scikit learn中的PCA
    • Chapter7
      • 7-7 MNIST数据集
    • Chapter7
      • 7-8 使用PCA降噪
    • Chapter7
      • 7-9 人脸识别和特征脸(未完成)
    • Chapter8
      • 第八章:多项式回归与模型泛化
    • Chapter8
      • 8-10 L1,L2和弹性网络
    • Chapter8
      • 8-2 scikit-learn中的多项式回归和pipeline
    • Chapter8
      • 8-3 过拟合和欠拟合
    • Chapter8
      • 8-4 为什么要训练数据集和测试数据集
    • Chapter8
      • 8-5 学习曲线
    • Chapter8
      • 8-6 验证数据集与交叉验证
    • Chapter8
      • 8-7 偏差方差权衡 Bias Variance Trade off
    • Chapter8
      • 8-8 模型正则化 Regularization
    • Chapter8
      • 8-9 LASSO Regularization
    • Chapter9
      • 第九章:逻辑回归
    • Chapter9
      • 9-2 逻辑回归的损失函数
    • Chapter9
      • 9-3 逻辑回归算法损失函数的梯度
    • Chapter9
      • 9-4 实现逻辑回归算法
    • Chapter9
      • 9-5 决策边界
    • Chapter9
      • 9-6 在逻辑回归中使用多项式特征
    • Chapter9
      • 9-7 scikit-learn中的逻辑回归
    • Chapter9
      • 9-8 OvR与OvO
Powered by GitBook
On this page
  • 测试数据
  • 向量化计算dJ
  • 使用真实数据测试模型
  • 真实数据 + 正规化方程解
  • 真实数据 + 梯度下降法
  • 真实数据 + 梯度下降法 + eta=0.000001
  • 真实数据 + 梯度下降法 + eta=0.000001 + n_iters=1e6
  • 梯度下降法与数据归一化
  1. src
  2. Chapter6

6-5 梯度下降的向量化

PreviousChapter6NextChapter6

Last updated 5 years ago

测试数据

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
x = 2 * np.random.random(size=100)
y = x * 3. + 4. + np.random.normal(size=100)

X = x.reshape(-1, 1)

plt.scatter(x, y)
plt.show()

向量化计算dJ

        def dJ(theta, X_b, y):
            return X_b.T.dot(X_b.dot(theta)-y) * 2. / len(X_b)

使用真实数据测试模型

真实数据 + 正规化方程解

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=666)

lin_reg1 = LinearRegression()
lin_reg1.fit_normal(X_train, y_train)  # 见5-4
lin_reg1.score(X_test, y_test)

输出结果: 0.8129794056212832

真实数据 + 梯度下降法

lin_reg2 = LinearRegression()
lin_reg2.fit_gd(X_train, y_train)
lin_reg2.score(X_test, y_test)

输出结果: eta太大导致搜索过程不收敛

真实数据 + 梯度下降法 + eta=0.000001

lin_reg2 = LinearRegression()
lin_reg2.fit_gd(X_train, y_train, eta = 0.000001)
lin_reg2.score(X_test, y_test)

输出结果: 0.27586818724477247

训练次数不够,没有达到最优值

真实数据 + 梯度下降法 + eta=0.000001 + n_iters=1e6

lin_reg2 = LinearRegression()
lin_reg2.fit_gd(X_train, y_train, eta = 0.000001, n_iters=1e6)
lin_reg2.score(X_test, y_test)

输出结果: 0.7542932581943915

训练次数太多,导致训练时间太长,但次数又不足以找到最优解 解决方法:数据归一化

梯度下降法与数据归一化

多元线性回归问题中,不同特征的规格一样,导致eta很难选。同一个eta可能会导致某些无法收敛而另一特征又收敛太慢。 因此使用梯度下降法之前,最好对数据进行归一化

from sklearn.preprocessing import StandardScaler

standardScaler = StandardScaler()
standardScaler.fit(X_train)

X_train_standard = standardScaler.transform(X_train)
X_test_standard = standardScaler.transform(X_test)

lin_reg3 = LinearRegression()
lin_reg3.fit_gd(X_train_standard, y_train)
lin_reg3.score(X_test_standard, y_test)

输出结果: 0.8129873310487505