4个等式的证明

等式一

证明:δjL=CajLσ(zjL)\delta^L_j = \frac{\partial C}{\partial a^L_j} \sigma'(z^L_j)

\begin{eqnarray} \delta^L_j = & \frac{\partial C}{\partial z^L_j}. \tag{36} \\ = & \sum_k \frac{\partial C}{\partial a^L_k} \frac{\partial a^L_k}{\partial z^L_j}, \tag{37} \\ = & \frac{\partial C}{\partial a^L_j} \frac{\partial a^L_j}{\partial z^L_j}. \tag{38} \\ = & \frac{\partial C}{\partial a^L_j} \sigma'(z^L_j), \tag{39} \end{eqnarray}

等式(1)得证

等式二

证明:δl=((wl+1)Tδl+1)σ(zl)\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)

\begin{eqnarray} \delta^l_j & = & \frac{\partial C}{\partial z^l_j} \tag{40}\\ & = & \sum_k \frac{\partial C}{\partial z^{l+1}_k} \frac{\partial z^{l+1}_k}{\partial z^l_j} \tag{41}\\ & = & \sum_k \frac{\partial z^{l+1}_k}{\partial z^l_j} \delta^{l+1}_k, \tag{42} \\ & = & \sum_k w^{l+1}_{kj} \delta^{l+1}_k \sigma'(z^l_j). \tag{45} \end{eqnarray}

等式二得证

公式(45)说明:

\begin{eqnarray} z^{l+1}_k = \sum_j w^{l+1}_{kj} a^l_j +b^{l+1}_k = \sum_j w^{l+1}_{kj} \sigma(z^l_j) +b^{l+1}_k. \tag{43} \\ \frac{\partial z^{l+1}_k}{\partial z^l_j} = w^{l+1}_{kj} \sigma'(z^l_j). \tag{44} \end{eqnarray}

等式三

证明:Cbjl=δjl\frac{\partial C}{\partial b^l_j} = \delta^l_j

本章在4个等式的形式和证明过程中,下标有些混乱,给理解公式带来障碍,这里把下标的含义重新申请一下: j:当前层的神经元的下标 k:下一层神经元的下标 i:上一层神经元的下标

书上已经写给了zkl+1z^{l+1}_kwkjl+1w^{l+1}_{kj}bkl+1b^{l+1}_k的关系为:

\begin{eqnarray} z^{l+1}_k = \sum_j w^{l+1}_{kj} a^l_j +b^{l+1}_k \tag{43}\end{eqnarray}

同理可写出zjlz^{l}_jwjilw^{l}_{ji}bjlb^{l}_j的关系为:

\begin{eqnarray} z^{l}_j = \sum_i w^{l}_{ji} a^{l-1}_i +b^{l}_j \tag{43.1}\end{eqnarray}
\begin{eqnarray} \frac{\partial C}{\partial b^l_j} & = & \frac{\partial C}{\partial z^l_j} \frac{\partial z^l_j}{\partial b^l_j} = \delta^l_j \end{eqnarray}

等式三得证

等式四

证明:Cwjkl=akl1δjl\frac{\partial C}{\partial w^l_{jk}} = a^{l-1}_k \delta^l_j

根据等式三中关于下标的定义,等式四应调整为:

Cwjil=ail1δjl\frac{\partial C}{\partial w^l_{ji}} = a^{l-1}_i \delta^l_j
\begin{eqnarray} \frac{\partial C}{\partial w^l_{ji}} = \frac{\partial C}{\partial z^l_j} \frac{\partial z^l_j}{\partial w^l_{ji}} = a^{l-1}_k \delta^l_j \end{eqnarray}

等式三得证

Last updated