4个等式的证明
等式一
证明:
\begin{eqnarray}
\delta^L_j = & \frac{\partial C}{\partial z^L_j}.
\tag{36} \\
= & \sum_k \frac{\partial C}{\partial a^L_k} \frac{\partial a^L_k}{\partial z^L_j},
\tag{37} \\
= & \frac{\partial C}{\partial a^L_j} \frac{\partial a^L_j}{\partial z^L_j}.
\tag{38} \\
= & \frac{\partial C}{\partial a^L_j} \sigma'(z^L_j),
\tag{39}
\end{eqnarray}
等式(1)得证
等式二
证明:
\begin{eqnarray}
\delta^l_j & = & \frac{\partial C}{\partial z^l_j} \tag{40}\\
& = & \sum_k \frac{\partial C}{\partial z^{l+1}_k} \frac{\partial z^{l+1}_k}{\partial z^l_j} \tag{41}\\
& = & \sum_k \frac{\partial z^{l+1}_k}{\partial z^l_j} \delta^{l+1}_k,
\tag{42} \\
& = & \sum_k w^{l+1}_{kj} \delta^{l+1}_k \sigma'(z^l_j).
\tag{45}
\end{eqnarray}
等式二得证
公式(45)说明:
\begin{eqnarray}
z^{l+1}_k = \sum_j w^{l+1}_{kj} a^l_j +b^{l+1}_k = \sum_j w^{l+1}_{kj} \sigma(z^l_j) +b^{l+1}_k.
\tag{43} \\
\frac{\partial z^{l+1}_k}{\partial z^l_j} = w^{l+1}_{kj} \sigma'(z^l_j).
\tag{44}
\end{eqnarray}
等式三
证明:
本章在4个等式的形式和证明过程中,下标有些混乱,给理解公式带来障碍,这里把下标的含义重新申请一下: j:当前层的神经元的下标 k:下一层神经元的下标 i:上一层神经元的下标
书上已经写给了与、的关系为:
\begin{eqnarray}
z^{l+1}_k = \sum_j w^{l+1}_{kj} a^l_j +b^{l+1}_k
\tag{43}\end{eqnarray}
同理可写出与、的关系为:
\begin{eqnarray}
z^{l}_j = \sum_i w^{l}_{ji} a^{l-1}_i +b^{l}_j
\tag{43.1}\end{eqnarray}
\begin{eqnarray}
\frac{\partial C}{\partial b^l_j} & = & \frac{\partial C}{\partial z^l_j} \frac{\partial z^l_j}{\partial b^l_j} = \delta^l_j
\end{eqnarray}
等式三得证
等式四
证明:
根据等式三中关于下标的定义,等式四应调整为:
\begin{eqnarray}
\frac{\partial C}{\partial w^l_{ji}} = \frac{\partial C}{\partial z^l_j} \frac{\partial z^l_j}{\partial w^l_{ji}} = a^{l-1}_k \delta^l_j
\end{eqnarray}
等式三得证
Last updated