🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

  1. 第7章 深度学习中的正则化

7.9 参数绑定和参数共享

使用: 1. 参数范数惩罚,例如L2范式的Ω(w(A),w(B))=∣∣w(A)−w(B)∣∣22\Omega(w^{(A)},w^{(B)}) = ||w^{(A)}-w^{(B)}||^2_2Ω(w(A),w(B))=∣∣w(A)−w(B)∣∣22​ 2.

[success] 可以根据先验知识,要求两个任务相似的模型的参数接近

目前为止,本章讨论对参数添加约束或惩罚时,一直是相对于固定的区域或点。 例如,$L^2$正则化(或权重衰减)对参数偏离零的固定值进行惩罚。 然而,有时我们可能需要其他的方式来表达我们对模型参数适当值的先验知识。 有时候,我们可能无法准确地知道应该使用什么样的参数,但我们根据相关领域和模型结构方面的知识得知模型参数之间应该存在一些相关性。

我们经常想要表达的一种常见依赖是某些参数应当彼此接近。 考虑以下情形:我们有两个模型执行相同的分类任务(具有相同类别),但输入分布稍有不同。 形式地,我们有参数为$w^{(A)}$的模型$A$和参数为$w^{(B)}$的模型$B$。 这两种模型将输入映射到两个不同但相关的输出:$\hat y^{(A)} = f(w^{(A)}, x)$和$\hat y^{(B)} = f(w^{(B)}, x)$。

我们可以想象,这些任务会足够相似(或许具有相似的输入和输出分布),因此我们认为模型参数应彼此靠近: $\forall i, w_i^{(A)}$应该与$ w_i^{(B)}$接近。

[success] 使两个模型参数接近的方式有两种: (1)正则化 (2)强迫某些参数相等/参数共享

我们可以通过正则化利用此信息。 具体来说,我们可以使用以下形式的参数范数惩罚: $\Omega(w^{(A)}, w^{(B)}) = ||w^{(A)}-w^{(B)}||_2^2$。 在这里我们使用$L^2$惩罚,但也可以使用其他选择。

这种方法由\cite{LasserreJ2006}提出,正则化一个模型(监督模式下训练的分类器)的参数,使其接近另一个无监督模式下训练的模型(捕捉观察到的输入数据的分布)的参数。 构造的这种架构使得分类模型中的许多参数能与无监督模型中对应的参数匹配。

参数范数惩罚是正则化参数使其彼此接近的一种方式,而更流行的方法是使用约束:\emph{强迫某些参数相等}。 由于我们将各种模型或模型组件解释为共享唯一的一组参数,这种正则化方法通常被称为参数共享。 和正则化参数使其接近(通过范数惩罚)相比,参数共享的一个显著优点是,只有参数(唯一一个集合)的子集需要被存储在内存中。 对于某些特定模型,如卷积神经网络,这可能可以显著减少模型所占用的内存。

[success] 参数共享的优点:显著减少模型所占用的内存。 参数共享方法广泛用于CNN。

卷积神经网络

目前为止,最流行和广泛使用的参数共享出现在应用于计算机视觉的卷积神经网络中。

自然图像有许多统计属性是对转换不变的。 例如,猫的照片即使向右边移了一个像素,仍保持猫的照片。 CNN通过在图像多个位置共享参数来考虑这个特性。 相同的特征(具有相同权重的隐藏单元)在输入的不同位置上计算获得。 这意味着无论猫出现在图像中的第$i$列或$i + 1$列,我们都可以使用相同的猫探测器找到猫。

参数共享显著降低了CNN模型的参数数量,并显著提高了网络的大小而不需要相应地增加训练数据。 它仍然是将领域知识有效地整合到网络架构的最佳范例之一。

我们将会在\chapref{chap:convolutional_networks}中更详细地讨论卷积神经网络。

Previous7.8 提前终止Next7.10 稀疏表示

Last updated 5 years ago

Was this helpful?