🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

  1. 第7章 深度学习中的正则化

7.13 对抗训练

在许多情况下,神经网络在独立同分布的测试集上进行评估已经达到了人类表现。 因此,我们自然要怀疑这些模型在这些任务上是否获得了真正的人类层次的理解。 为了探索网络对底层任务的理解层次,我们可以探索这个模型错误分类的例子。 \cite{Szegedy-ICLR2014}发现,在精度达到人类水平的神经网络上通过优化过程故意构造数据点,其上的误差率接近\NUMTEXT{100\%},模型在这个输入点$x'$的输出与附近的数据点$x$非常不同。 在许多情况下,$x'$与$x$非常近似,人类观察者不会察觉原始样本(adversarial example)和对抗样本之间的差异,但是网络会作出非常不同的预测。 见\figref{fig:chap7_panda_577}中的例子。

对抗样本在很多领域有很多影响,例如计算机安全,这超出了本章的范围。 然而,它们在正则化的背景下很有意思,因为我们可以通过对抗训练减少原有独立同分布的测试集的错误率——在对抗扰动的训练集样本上训练网络\citep{Szegedy-ICLR2014,Goodfellow-2015-adversarial}。

\cite{Goodfellow-2015-adversarial}表明,这些对抗样本的主要原因之一是过度线性。 神经网络主要是基于线性块构建的。 因此在一些实验中,它们实现的整体函数被证明是高度线性的。 这些线性函数很容易优化。 不幸的是,如果一个线性函数具有许多输入,那么它的值可以非常迅速地改变。 如果我们用$\epsilon$改变每个输入,那么权重为$w$的线性函数可以改变$\epsilon ||w||_1$之多,如果$w$是高维的这会是一个非常大的数。 对抗训练通过鼓励网络在训练数据附近的局部区域恒定来限制这一高度敏感的局部线性行为。 这可以被看作是一种明确地向监督神经网络引入局部恒定先验的方法。

对抗训练有助于体现积极正则化与大型函数族结合的力量。

[warning] 什么是对抗训练? 后面看不懂?

纯粹的线性模型,如逻辑回归,由于它们被限制为线性而无法抵抗对抗样本。 神经网络能够表示范围广泛的函数,从接近线性到局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。

对抗样本也提供了一种实现半监督学习的方法。 在数据集中没有分配标签的点$x$处,模型自己为其分配一些标签$\hat y$。 模型的标记$\hat y$未必是真正的标签,但如果模型是高品质的,那么$\hat y$提供正确标签的可能性很大。 我们可以搜索一个对抗样本 $x'$,导致分类器输出一个标签$y'$且$y' \neq \hat y$。 不使用真正的标签,而是由训练好的模型提供标签产生的对抗样本被称为虚拟对抗样本\citep{miyato2015distributional}。 我们可以训练分类器为$x$和$x'$分配相同的标签。 这鼓励分类器学习一个沿着未标签数据所在流形上任意微小变化都很鲁棒的函数。 驱动这种方法的假设是,不同的类通常位于分离的流形上,并且小扰动不会使数据点从一个类的流形跳到另一个类的流形上。

Previous7.12 DropoutNext7.14 切面距离、正切传播和流形正切分类器

Last updated 5 years ago

Was this helpful?