🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

第11章 实践方法论

要成功地使用深度学习技术,仅仅知道存在哪些算法和解释他们为何有效的原理是不够的。 一个优秀的机器学习实践者还需要知道如何针对具体应用挑选一个合适的算法以及如何监控,并根据实验反馈改进机器学习系统。 在机器学习系统的日常开发中,实践者需要决定是否收集更多的数据、增加或减少模型容量、添加或删除正则化项、改进模型的优化、改进模型的近似推断或调试模型的软件实现。

[success] DL/ML玩家的必备技能 知道存在哪些算法 解释他们为何有效的原理 针对具体应用挑选一个合适的算法 如何监控 根据实验反馈改进

尝试这些操作都需要大量时间,因此确定正确做法,而不盲目猜测尤为重要的。

本书的大部分内容都是关于不同的机器学习模型、训练算法和目标函数。 这可能给人一种印象——成为机器学习专家的最重要因素是了解各种各样的机器学习技术,并熟悉各种不同的数学。 在实践中,正确使用一个普通算法通常比草率地使用一个不清楚的算法效果更好。 正确应用一个算法需要掌握一些相当简单的方法论。 本章的许多建议都来自~{ng-lecture-advice}。

我们建议参考以下几个实践设计流程:

[success] 第一次读这一章的时候只是觉得这一章比较简单,没有那些复杂的公式和奇怪的术语。这一章的大部份文字都知道它的意思。 直到把前面的内容都啃完,并在kaggle上有一点点小小的尝试之后,才发现这一章的内容,每一条建议都极为中肯。 要真正理解这一章的内容,需要大量的实践。

  • 确定目标——使用什么样的误差度量,并为此误差度量指定目标值。

    这些目标和误差度量取决于该应用旨在解决的问题。

  • 尽快建立一个端到端的工作流程,包括估计合适的性能度量。

  • 搭建系统,并确定性能瓶颈。

    检查哪个部分的性能差于预期,以及是否是因为过拟合、欠拟合,或者数据或软件缺陷造成的。

  • 根据具体观察反复地进行增量式的改动,如收集新数据、调整超参数或改进算法。

我们将使用街景地址号码转录系统~{cite?}作为一个运行示例。 该应用的目标是将建筑物添加到谷歌地图。 街景车拍摄建筑物,并记录与每张建筑照片相关的GPS坐标。 卷积网络识别每张照片上的地址号码,由谷歌地图数据库在正确的位置添加该地址。 这个商业应用是一个很好的示例,它的开发流程遵循我们倡导的设计方法。

我们现在描述这个过程中的每一个步骤。

[success] train/vali/test set ML攻略都会推荐训练集:验证集:测试集 = 70:0:30或60:20:20。 当数据量少(10万级别)时以上比例是合理的。 当DL训练是数量量特别大(百万级别及以上)时,验证集和测试集的比例可减少。 例如dateset = 1000000,比例可以调整为98:1:1 mismatch train/test distribution 例如训练集中网上抓来的制作精良的样本。而测试集是用户上传的比较随意的样本。 建议:验证集和测试集来自同一分布。 测试集可以不要 测试集用于对已选模型的无偏估计,可以没有。 问:label有错误是否需要修改? 答:训练集中的随机错误,不需要修改,例如打标签的人偶尔的疏忽。 训练集中的系统错误,需要修改,例如某个打标签的人把所有白色的狗都标记为猫。 验证集/测试集的错误:取决于是否影响在开发集上评估算法的能力。

Previous10.12 外显记忆Next11.1 性能度量

Last updated 5 years ago

Was this helpful?