证明:对偶函数的极大化=模型的极大似然估计
模型的极大似然估计
\begin{aligned}
L_{\tilde P}(P_w) = \log \prod_{x,y}P(y|x)^{\tilde P(x, y)} \\
= \sum_{x,y}\tilde P(x, y)\log P(y|x) && {1}
\end{aligned}对偶函数的极大化
结论
Last updated
\begin{aligned}
L_{\tilde P}(P_w) = \log \prod_{x,y}P(y|x)^{\tilde P(x, y)} \\
= \sum_{x,y}\tilde P(x, y)\log P(y|x) && {1}
\end{aligned}Last updated