🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

  1. 第8章 深度模型中的优化
  2. 8.7 优化策略和元算法

8.7.2 坐标下降

在某些情况下,将一个优化问题分解成几个部分,可以更快地解决原问题。 如果我们相对于某个单一变量$x_i$最小化$f(x)$,然后相对于另一个变量$x_j$等等,反复循环所有的变量,我们会保证到达(局部)极小值。 这种做法被称为坐标下降,因为我们一次优化一个坐标。 更一般地,块坐标下降是指对于某个子集的变量同时最小化。 术语"坐标下降"通常既指块坐标下降,也指严格的单个坐标下降。

当优化问题中的不同变量能够清楚地分成相对独立的组,或是当优化一组变量明显比优化所有变量效率更高时,坐标下降最有意义。

[success] 适用场景: (1)参数容易分组 (2)优化一组变量比优化所有变量效率高

例如,考虑代价函数

J(H,W)=∑i,j∣Hi,j∣+∑i,j(X−W⊤H)i,j2.\begin{aligned} J(H, W) = \sum_{i,j} |H_{i,j}| + \sum_{i,j} \left( X - W^\top H \right)_{i,j}^2 . \end{aligned}J(H,W)=i,j∑​∣Hi,j​∣+i,j∑​(X−W⊤H)i,j2​.​

该函数描述了一种被称为稀疏编码的学习问题,其目标是寻求一个权重矩阵$W$,可以线性解码激活值矩阵$H$以重构训练集$X$。

[warning] 稀疏编码的学习问题?

稀疏编码的大多数应用还涉及到权重衰减或$W$列范数的约束,以避免极小$H$和极大$W$的病态解。

[warning] 极小$H$和极大$W$的病态解?

函数$J$不是凸的。 然而,我们可以将训练算法的输入分成两个集合:字典参数$W$和编码表示$H$。 最小化关于这两者之一的任意一组变量的目标函数都是凸问题。 因此,块坐标下降允许我们使用高效的凸优化算法,交替固定$H$优化$W$和固定$W$优化$H$。

当一个变量的值很大程度地影响另一个变量的最优值时,坐标下降不是一个很好的方法,如函数$f(x)=(x_1 - x_2)^2+\alpha(x_1^2 + x_2^2)$,其中$\alpha$是正值常数。

[success] 不适用场景:一组变量的变化很大程度地影响另一组变量的最优值。

第一项鼓励两个变量具有相似的值,而第二项鼓励它们接近零。 解是两者都为零。 牛顿法可以一步解决这个问题,因为它是一个正定二次问题。 但是,对于小值$\alpha$而言,坐标下降会使进展非常缓慢,因为第一项不允许单个变量变为和其他变量当前值显著不同的值。

Previous8.7.1 批标准化Next8.7.3 Polyak 平均

Last updated 5 years ago

Was this helpful?