🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

  1. 第8章 深度模型中的优化
  2. 8.7 优化策略和元算法

8.7.5 设计有助于优化的模型

改进优化的最好方法并不总是改进优化算法。 相反,深度模型中优化的许多改进来自于设计易于优化的模型。

原则上,我们可以使用呈锯齿非单调模式上上下下的激活函数,但是,这将使优化极为困难。 在实践中,\emph{选择一族容易优化的模型比使用一个强大的优化算法更重要}。 神经网络学习在过去30年的大多数进步主要来自于改变模型族,而非改变优化过程。 1980年代用于训练神经网络的带动量的随机梯度下降,仍然是现代神经网络应用中的前沿算法。

[success] 怎样的模型易于优化? (1)多使用线性函数 (2)Jacobian具有合理的值 (3)线性函数在一个方向上一致地增加 (4)局部梯度信息合理 (5)层之间的跳跃连接 (6)添加“辅助头”

具体来说,现代神经网络的\emph{设计选择}体现在层之间的线性变换,几乎处处可导的激活函数,和大部分定义域都有明显的梯度。 特别地,创新的模型,如\,LSTM,整流线性单元和\,maxout\,单元都比先前的模型(如基于\,sigmoid\,单元的深度网络)使用更多的线性函数。 这些模型都具有简化优化的性质。 如果线性变换的\,Jacobian\,具有相对合理的奇异值,那么梯度能够流经很多层。 此外,线性函数在一个方向上一致增加,所以即使模型的输出远离正确值,也可以简单清晰地计算梯度,使其输出方向朝降低损失函数的方向移动。 换言之,现代神经网络的设计方案旨在使其\emph{局部}梯度信息合理地对应着移向一个遥远的解。

其他的模型设计策略有助于使优化更简单。 例如,层之间的线性路径或是跳跃连接减少了从较低层参数到输出最短路径的长度,因而缓解了梯度消失的问题{cite?}。 一个和跳跃连接相关的想法是添加和网络中间隐藏层相连的输出的额外副本,如GoogLeNet~{cite?}和深度监督网络{cite?}。 这些"辅助头"被训练来执行和网络顶层主要输出相同的任务,以确保底层网络能够接受较大的梯度。 当训练完成时,辅助头可能被丢弃。 这是之前小节介绍到的预训练策略的替代方法。 以这种方式,我们可以在一个阶段联合训练所有层,而不改变架构,使得中间层(特别是低层)能够通过更短的路径得到一些如何更新的有用信息。 这些信息为底层提供了误差信号。

Previous8.7.4 监督预训练Next第9章 卷积网络

Last updated 5 years ago

Was this helpful?