15-2 整齐打印
Last updated
Last updated
题目:
思考: 定义 (1)extra为行末多余空格字符个数的立方和 (2)f[i,j] = M - j + i - SUM(lk) , i<=k<=j (3)令len[i,j]表示第i个单词到第j个单词可以得到的最小extra 整齐打印问题可以分解成以下子问题 (1)若f[i,j] < 0,,则len[i,j] = MIN(len[i,k] + len[k+1,j]) , i<=k 0 && j==n,则len[i,j] = 0 (3)若i==j,则len[i,j] = (f[i,j])^3 代码:为了编程方便,程序和说明略有不同
using namespace std;
int s[N][N];
void DP(int len) { int i, j, k, step, temp; for(step = 0; step < N; step++) { for(i = 0; i < N; i++) { temp = 0;j = i + step; if(j >= N) break; //计算len[i,j] for(k = i; k <= j; k++) { if(k != i) temp++; temp = temp + len[k]; if(temp > M) break; } if(temp > M)s[i][j] = 0x7fffffff; //若f[i,j] > 0 && j==n,则len[i,j] = 0 else if(j == N-1)s[i][j] = 0; //若i==j,则len[i,j] = (f[i,j])^3 else s[i][j] = pow(M1.0-temp,3); //若f[i,j] < 0,,则len[i,j] = MIN(len[i,k] + len[k+1,j]) , i<=k<j for(k = i; k < j; k++) if(s[i][k]+s[k+1][j] < s[i][j]) s[i][j] = s[i][k]+s[k+1][j]; } } cout<<s[0][N-1]<<endl; } void Print() { int i, j; for(i = 0; i < N; i++) { for(j = 0; j < N; j++) cout<<s[i][j]<<' '; cout<<endl; } } /1 2 3 1 2 3 1 2 3 1/ int main() { int len[N], i; //输出数据 for(i = 0; i < N; i++) cin>>len[i]; DP(len); // Print(); return 0; }