🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

  1. 第10章 序列建模:循环和递归网络
  2. 10.2 循环神经网络

10.2.4 基于上下文的RNN序列建模

[success] 通常将RNN的输入称为“上下文”。

上一节描述了没有输入$x$时,关于随机变量序列$y^{(t)}$的RNN如何对应于有向图模型。 当然,如\eqn?所示的RNN包含一个输入序列$x^{(1)},x^{(2)},\cdots,x^{(\tau)}$。 一般情况下,RNN允许将图模型的观点扩展到不仅代表$y$变量的联合分布也能表示给定$x$后$y$条件分布。 如在\sec?的前馈网络情形中所讨论的,任何代表变量$P(y;\theta)$的模型都能被解释为代表条件分布$P(y \mid \omega)$的模型,其中$\omega=\theta$。 我们能像之前一样使用$P(y \mid \omega)$代表分布$P(y \mid x)$来扩展这样的模型,但要令$\omega$是关于$x$的函数。

[warning] $P(y \mid \omega)$和$P(y \mid x)$是什么关系?

在RNN的情况,这可以通过不同的方式来实现。 此处,我们回顾最常见和最明显的选择。

之前,我们已经讨论了将$t =1, \cdots, \tau$的向量$x^{(t)}$序列作为输入的RNN。 另一种选择是只使用单个向量$x$作为输入。 当$x$是一个固定大小的向量时,我们可以简单地将其看作产生$y$序列RNN的额外输入。 将额外输入提供到RNN的一些常见方法是:

  • 在每个时刻作为一个额外输入,或

  • 作为初始状态$h^{(0)}$,或

    [warning] 这种方法和“使用序列作为输入”有什么区别?

  • 结合两种方式。

第一个也是最常用的方法如\fig?所示。 输入$x$和每个隐藏单元向量$h^{(t)}$之间的相互作用是通过新引入的权重矩阵$R$参数化的,这是只包含$y$序列的模型所没有的。

[warning] R和U有什么区别?

Previous10.2.3 作为有向图模型的循环网络Next10.3 双向RNN

Last updated 5 years ago

Was this helpful?