🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

  1. 第10章 序列建模:循环和递归网络

10.4 基于编码 - 解码的序列到序列架构

我们已经在\fig?看到RNN如何将输入序列映射成固定大小的向量,在\fig?中看到RNN如何将固定大小的向量映射成一个序列,在\fig?、\fig?、\fig?和\fig?中看到RNN如何将一个输入序列映射到等长的输出序列。

本节我们讨论如何训练RNN,使其将输入序列映射到不一定等长的输出序列。 这在许多场景中都有应用,如语音识别、机器翻译或问答,其中训练集的输入和输出序列的长度通常不相同(虽然它们的长度可能相关)。

我们经常将RNN的输入称为"上下文"。 我们希望产生此上下文的表示,$C$。 这个上下文$C$可能是一个概括输入序列$X=(x^{(1)},\cdots,x^{(n_x)})$的向量或者向量序列。

用于映射可变长度序列到另一可变长度序列最简单的RNN架构最初由{cho-al-emnlp14}提出,之后不久由{Sutskever-et-al-NIPS2014}独立开发,并且第一个使用这种方法获得翻译的最好结果。 前一系统是对另一个机器翻译系统产生的建议进行评分,而后者使用独立的循环网络生成翻译。 这些作者分别将该架构称为编码-解码或序列到序列架构,如\fig?所示。 这个想法非常简单:(1)编码器(encoder)或\,\textbf{读取器}\,(reader)或\,\textbf{输入}(input)RNN处理输入序列。 编码器输出上下文$C$(通常是最终隐藏状态的简单函数)。 (2)解码器(decoder)或\,\textbf{写入器}(writer)或\,\textbf{输出}(output)RNN则以固定长度的向量(如\fig?)为条件产生输出序列$Y=(y^{(1)}, \cdots, y^{(ny)})$。 这种架构对比本章前几节提出的架构的创新之处在于长度$n_x$和$n_y$可以彼此不同,而之前的架构约束$n_x = n_y = \tau$。 在序列到序列的架构中,两个RNN共同训练以最大化$\log P( y^{(1)}, \cdots, y^{(n_y)} \mid x^{(1)},\cdots,x^{(n_x)} )$(关于训练集中所有$x$和$y$对的平均)。 编码器RNN的最后一个状态$h{n_x}$通常被当作输入的表示$C$并作为解码器RNN的输入。

如果上下文$C$是一个向量,则解码器RNN只是在\sec?描述的向量到序列RNN。 正如我们所见,向量到序列RNN至少有两种接受输入的方法。 输入可以被提供为RNN的初始状态,或连接到每个时间步中的隐藏单元。 这两种方式也可以结合。

这里并不强制要求编码器与解码器的隐藏层具有相同的大小。

此架构的一个明显不足是,编码器RNN输出的上下文$C$的维度太小而难以适当地概括一个长序列。 这种现象由{Bahdanau-et-al-ICLR2015-small}在机器翻译中观察到。 他们提出让$C$成为可变长度的序列,而不是一个固定大小的向量。 此外,他们还引入了将序列$C$的元素和输出序列的元素相关联的注意力机制(attention mechanism)。 读者可在\sec?了解更多细节。

Previous10.3 双向RNNNext10.5 深度循环网络

Last updated 5 years ago

Was this helpful?