🎨
Bible-DeepLearning
  • Introduction
  • 第6章 深度前馈网络
    • 6.1 例子:学习XOR
    • 6.2 基于梯度的学习
      • 6.2.1 代价函数
        • 6.2.1.1 使用最大似然学习条件分布
        • 6.2.1.2 学习条件统计量
      • 6.2.2 输出单元
        • 6.2.2.1 用于高斯输出分布的线性神单元
        • 6.2.2.2 用于Bernoulli输出分布的sigmoid单元
        • 6.2.2.3 用于Multinoulli输出分布的softmax单元
    • 6.3 隐藏单元
      • 6.3.1 ReLU及其扩展
      • 6.3.2 logistic sigmoid与双曲正切函数
      • 6.3.3 其他隐藏单元
      • 李宏毅补充 SELU
    • 6.4 架构设计
    • 6.5 反向传播和其他的微分算法
      • 6.5.1 计算图
      • 6.5.2 微积分中的链式法则
      • 6.5.3 递归地使用链式法则来实现反向传播
      • 6.5.4 全连接MLP中的反向传播计算
      • 6.5.5 符号到符号的导数
      • 6.5.6 一般化的反向传播
      • 6.5.7 实例:用于MLP 训练的反向传播
      • 6.5.8 复杂化
  • 第7章 深度学习中的正则化
    • 7.1 参数范数惩罚
      • 7.1.1 L2参数正则化
      • 7.1.2 L1参数正则化
    • 7.2 作为约束的范数惩罚
    • 7.3 正则化和欠约束问题
    • 7.4 数据集增强
    • 7.5 噪声鲁棒性
    • 7.6 半监督学习
    • 7.7 多任务学习
    • 7.8 提前终止
    • 7.9 参数绑定和参数共享
    • 7.10 稀疏表示
    • 7.11 Bagging 和其他集成方法
    • 7.12 Dropout
    • 7.13 对抗训练
    • 7.14 切面距离、正切传播和流形正切分类器
    • Ag补充 一些能用于提升比赛成绩的方法
  • 第8章 深度模型中的优化
    • 8.1 学习和纯优化有什么不同
      • 8.1.1 经验风险最小化
      • 8.1.2 代理损失函数和提前终止
      • 8.1.3 批量算法和小批量算法
    • 8.2 神经网络优化中的挑战
      • 8.2.1 病态
      • 8.2.2 局部极小值
      • 8.2.3 8.2.3 高原、鞍点和其他平坦区域
      • 8.2.4 悬崖和梯度爆炸
      • 8.2.5 长期依赖
      • 8.2.6 非精确梯度
    • 8.3 基本算法
      • 8.3.1 随机梯度下降
      • 8.3.2 动量
      • 8.3.3 Nesterov 动量
    • 8.4 参数初始化策略
    • 8.5 自适应学习率算法
      • 8.5.1 AdaGrad
      • 8.5.2 RMSProp
      • 8.5.3 Adam
      • 8.5.4 选择正确的优化算法
    • 8.6 二阶近似方法
      • 8.6.1 牛顿法
      • 8.6.2 共轭梯度
      • 8.6.3 BFGS
    • 8.7 优化策略和元算法
      • 8.7.1 批标准化
      • 8.7.2 坐标下降
      • 8.7.3 Polyak 平均
      • 8.7.4 监督预训练
      • 8.7.5 设计有助于优化的模型
  • 第9章 卷积网络
    • 9.1 卷积运算
    • 9.2 动机
    • 9.3 池化
    • 9.4 卷积与池化作为一种无限强的先验
    • 9.5 基本卷积函数的变体
    • 9.6 结构化输出
    • 9.7 数据类型
  • 第10章 序列建模:循环和递归网络
    • 10.1 展开计算图
    • 10.2 循环神经网络
      • 10.2.1 导师驱动过程和输出循环网络
      • 10.2.2 计算循环神经网络的梯度
      • 10.2.3 作为有向图模型的循环网络
      • 10.2.4 基于上下文的RNN序列建模
    • 10.3 双向RNN
    • 10.4 基于编码 - 解码的序列到序列架构
    • 10.5 深度循环网络
    • 10.6 递归神经网络
    • 10.7 长期依赖的挑战
    • 10.9 渗漏单元和其他多时间尺度的策略
    • 10.10 长短期记忆和其他门控RNN
      • 10.10.1 LSTM
      • 10.10.2 其他门控RNN
    • 10.11 优化长期依赖
      • 10.11.1 梯度截断
      • 10.11.2 引导信息流的正则化
    • 10.12 外显记忆
  • 第11章 实践方法论
    • 11.1 性能度量
    • 11.2 默认的基准模型
    • 11.3 决定是否收集更多数据
    • 11.4 选择超参数
      • 11.4.1 手动选择超参数
      • 11.4.3 网络搜索
      • 11.4.4 随机搜索
    • 11.5 调试策略
Powered by GitBook
On this page

Was this helpful?

  1. 第11章 实践方法论
  2. 11.4 选择超参数

11.4.3 网络搜索

当有三个或更少的超参数时,常见的超参数搜索方法是网格搜索。 对于每个超参数,使用者选择一个较小的有限值集去探索。 然后,这些超参数笛卡尔乘积得到一组组超参数,网格搜索使用每组超参数训练模型。 挑选验证集误差最小的超参数作为最好的超参数。 如\fig?所示超参数值的网格。

\begin{figure}[!htb] \ifOpenSource \centerline{\includegraphics{figure.pdf}} \else \begin{tabular}{cc} \includegraphics[width=0.35\textwidth]{Chapter11/figures/grid} & \includegraphics[width=0.35\textwidth]{Chapter11/figures/random} \end{tabular} \fi \caption{网格搜索和随机搜索的比较。 为了方便地说明,我们只展示两个超参数的例子,但是我们关注的问题中超参数个数通常会更多。 \emph{(左)}为了实现网格搜索,我们为每个超参数提供了一个值的集合。 搜索算法对每一种在这些集合的交叉积中的超参数组合进行训练。 \emph{(右)}为了实现随机搜索,我们给联合超参数赋予了一个概率分布。 通常超参数之间是相互独立的。 常见的这种分布的选择是均匀分布或者是对数均匀(从对数均匀分布中抽样,就是对从均匀分布中抽取的样本进行指数运算)的。 然后这些搜索算法从联合的超参数空间中采样,然后运行每一个样本。 网格搜索和随机搜索都运行了验证集上的误差并返回了最优的解。 这个图说明了通常只有一个超参数对结果有着重要的影响。 在这个例子中,只有水平轴上的超参数对结果有重要的作用。 网格搜索将大量的计算浪费在了指数量级的对结果无影响的超参数中,相比之下随机搜索几乎每次测试都测试了对结果有影响的每个超参数的独一无二的值。 此图经~{Bergstra+Bengio-LW2011}允许转载。} \end{figure}

应该如何选择搜索集合的范围呢? 在超参数是数值(有序)的情况下,每个列表的最小和最大的元素可以基于先前相似实验的经验保守地挑选出来,以确保最优解非常可能在所选范围内。 通常,网格搜索大约会在对数尺度下挑选合适的值,例如,一个学习率的取值集合是${0.1,0.01,10^{-3},10^{-4},10^{-5}}$,或者隐藏单元数目的取值集合${50,100,200,500,1000,2000}$。

通常重复进行网格搜索时,效果会最好。 例如,假设我们在集合${-1,0,1}$上网格搜索超参数 $\alpha$。 如果找到的最佳值是$1$,那么说明我们低估了最优值$\alpha$所在的范围,应该改变搜索格点,例如在集合${1,2,3}$中搜索。 如果最佳值是$0$,那么我们不妨通过细化搜索范围以改进估计,在集合${-0.1,0,0.1}$上进行网格搜索。

网格搜索带来的一个明显问题是,计算代价会随着超参数数量呈指数级增长。 如果有$m$个超参数,每个最多取$n$个值,那么训练和估计所需的试验数将是$O(n^m)$。 我们可以并行地进行实验,并且并行要求十分宽松(进行不同搜索的机器之间几乎没有必要进行通信)。 令人遗憾的是,由于网格搜索指数级增长的计算代价,即使是并行,我们也无法提供令人满意的搜索规模。

Previous11.4.1 手动选择超参数Next11.4.4 随机搜索

Last updated 4 years ago

Was this helpful?