space

欧氏空间:设A是一个实数域上的线性空间,定义一个A到实数域R的二元映射f,使得A中任意两个向量在R中都有唯一确定的数与之对应,若f满足以下三点: 任意α、β、γ∈A,任意k、l∈R (1)f(α, β) = f(β, α) ;(对称性) (2)f(kα + lβ, γ) = kf(α, γ) + lf(β, γ) ;(左线性) (3)当α ≠ 0时,f(α, α) >0;(正定性) 则称f为A的内积,A就称为欧氏空间。简而言之,欧氏空间就是具有了内积的线性空间。

内积空间:即欧氏空间

离散集合:就是对集合中的每个点,都可以画个圈圈把它和其他点分开来。

希尔伯特空间:就是完备的内积空间。

完备空间:空间中的任何柯西序列都收敛在该空间之内。

Last updated