✍️
mathematics_basic_for_ML
  • README
  • README
    • Summary
    • Geometry
      • EulerAngle
      • Gimbal lock
      • Quaternion
      • RiemannianManifolds
      • RotationMatrix
      • SphericalHarmonics
    • Information
      • Divergence
      • 信息熵 entropy
    • LinearAlgebra
      • 2D仿射变换(2D Affine Transformation)
      • 2DTransformation
      • 3D变换(3D Transformation)
      • ComplexTransformation
      • Conjugate
      • Hessian
      • IllConditioning
      • 逆变换(Inverse transform)
      • SVD
      • det
      • eigendecomposition
      • 矩阵
      • norm
      • orthogonal
      • special_matrix
      • trace
      • vector
    • Mathematics
      • Complex
      • ExponentialDecay
      • average
      • calculus
      • convex
      • derivative
      • 距离
      • function
      • space
      • Formula
        • euler
        • jensen
        • taylor
        • trigonometric
    • Numbers
      • 几何级数
      • SpecialNumbers
    • NumericalComputation
      • ConstrainedOptimization
      • GradientDescent
      • Newton
      • Nominal
      • ODE_SDE
      • Preprocessing
    • Probability
      • bayes
      • distribution
      • expectation_variance
      • 贝叶斯公式
      • functions
      • likelihood
      • mixture_distribution
      • 一些术语
      • probability_distribution
Powered by GitBook
On this page

Was this helpful?

  1. README
  2. Geometry

SphericalHarmonics

PreviousRotationMatrixNextInformation

Last updated 23 days ago

Was this helpful?

P31

Spherical Harmonics

Ylm(θ,ϕ)=NlmPlm(cos⁡θ)eImϕY_ {lm}(\theta ,\phi )= N_ {lm}P_ {lm}(\cos \theta )e^ {Im \phi }Ylm​(θ,ϕ)=Nlm​Plm​(cosθ)eImϕ

Complex sphere integration can be approximated by quadratic polynomial:

利用球谐函数定义了一组基,通过对球谐基的加权平均,可以组合出任意复杂的球面。

P32

Spherical Harmonics 基

Spherical Harmonics, a mathematical system analogous to the Fourier transform but defined across the surface of a sphere. The SH functions in general are defined on imaginary numbers

绿色表示正值,红色表示负值。 每一个维度的所有基都是正交的。 二阶导永远 0(光滑)。

P33

Spherical Harmonics Encoding

x=sin⁡θcos⁡ϕy=sin⁡θsin⁡ϕz=cos⁡θ\begin{align*} x& = \sin \theta \cos \phi \\\\ y & = \sin \theta \sin \phi\\\\ z & = \cos\theta \end{align*}xyz​=sinθcosϕ=sinθsinϕ=cosθ​
∫θ=0π∫ϕ=02πL(θ,ϕ)Ylm(θ,ϕ)sin⁡θdθdϕ≈[xyz1]TM[xyz1]\int\limits_{\theta =0}^{\pi } \int\limits_{\phi =0}^{2\pi } L(\theta,\phi )Y_{lm}(\theta ,\phi )\sin \theta d\theta d\phi \approx \begin{bmatrix} x \\\\ y \\\\ z\\\\ 1 \end{bmatrix}^TM\begin{bmatrix} x \\\\ y \\\\ z \\\\ 1 \end{bmatrix}θ=0∫π​ϕ=0∫2π​L(θ,ϕ)Ylm​(θ,ϕ)sinθdθdϕ≈​xyz1​​TM​xyz1​​