✍️
mathematics_basic_for_ML
  • README
  • README
    • Summary
    • Geometry
      • EulerAngle
      • Gimbal lock
      • Quaternion
      • RiemannianManifolds
      • RotationMatrix
      • SphericalHarmonics
    • Information
      • Divergence
      • 信息熵 entropy
    • LinearAlgebra
      • 2D仿射变换(2D Affine Transformation)
      • 2DTransformation
      • 3D变换(3D Transformation)
      • ComplexTransformation
      • Conjugate
      • Hessian
      • IllConditioning
      • 逆变换(Inverse transform)
      • SVD
      • det
      • eigendecomposition
      • 矩阵
      • norm
      • orthogonal
      • special_matrix
      • trace
      • vector
    • Mathematics
      • Complex
      • ExponentialDecay
      • average
      • calculus
      • convex
      • derivative
      • 距离
      • function
      • space
      • Formula
        • euler
        • jensen
        • taylor
        • trigonometric
    • Numbers
      • 几何级数
      • SpecialNumbers
    • NumericalComputation
      • ConstrainedOptimization
      • GradientDescent
      • Newton
      • Nominal
      • ODE_SDE
      • Preprocessing
    • Probability
      • bayes
      • distribution
      • expectation_variance
      • 贝叶斯公式
      • functions
      • likelihood
      • mixture_distribution
      • 一些术语
      • probability_distribution
Powered by GitBook
On this page

Was this helpful?

  1. README
  2. Geometry

RiemannianManifolds

黎曼流形*(Riemannian Manifold)是微分几何中的一个核心概念,指一个配备了黎曼度量(Riemannian Metric)的微分流形。它允许在流形上定义长度、角度、曲率等几何性质,是现代几何学、物理学(如广义相对论)和机器学习的基础工具之一。


核心定义

  1. 微分流形(Manifold) 一个局部类似于欧几里得空间(如 (\mathbb{R}^n))的拓扑空间,例如球面、环面或更复杂的曲面。

  2. 黎曼度量(Riemannian Metric) 在流形的每一点 (p) 的切空间 (T_p M) 上,定义一个正定对称双线性形式 (g_p),即对任意切向量 (X, Y \in T_p M),满足:

    • 对称性:(g_p(X, Y) = g_p(Y, X))

    • 正定性:(g_p(X, X) \geq 0),且等号仅在 (X=0) 时成立。

    这个度量允许计算切向量的长度、两向量的夹角以及曲线的弧长。


关键性质

  1. 曲线长度 流形上一条曲线 (\gamma(t)) 的弧长为: [ L = \int_a^b \sqrt{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} , dt ] 其中 (\dot{\gamma}(t)) 是曲线的切向量。

  2. 曲率 黎曼流形的曲率(如截面曲率、里奇曲率)由度量张量 (g) 的导数决定,描述了流形的“弯曲程度”。

  3. 测地线 流形上局部最短路径称为测地线(类似欧氏空间中的直线),由度量 (g) 决定的微分方程描述。


经典例子

  1. 欧氏空间 (\mathbb{R}^n) 配备标准内积 (g_{ij} = \delta_{ij})(即单位矩阵),此时长度、角度与经典几何一致。

  2. 球面 (S^2) 作为二维黎曼流形,其度量由三维欧氏空间中的诱导度量给出,曲率为正。

  3. 双曲平面 (\mathbb{H}^2) 负曲率流形的代表,常用于非欧几何和相对论模型。


物理与科学中的应用

  1. 广义相对论 时空被建模为四维伪黎曼流形(洛伦兹流形),其度量张量满足爱因斯坦场方程。

  2. 机器学习

    • 流形学习(Manifold Learning):通过黎曼几何降维(如Isomap、拉普拉斯特征映射)。

    • 优化算法:在非欧空间(如对称正定矩阵流形)设计梯度下降。

  3. 计算机视觉 处理3D形状、动作识别时,利用黎曼流形表示姿态或形变。


与伪黎曼流形的区别

  • 黎曼流形:度量正定(所有方向长度为正),适用于空间几何。

  • 伪黎曼流形:度量非正定(如时空中的洛伦兹度量 ((-,+,+,+))),用于相对论。


数学意义

黎曼流形将微积分推广到弯曲空间,统一了局部线性性质与全局拓扑结构,是研究几何、拓扑与物理的核心框架。例如:

  • 高斯-博内定理:连接曲率与欧拉示性数。

  • 爱因斯坦方程:物质分布决定时空曲率。


总结:黎曼流形是“弯曲空间”的严格数学描述,通过度量张量赋予其几何结构,为物理学、几何分析和数据科学提供了普适的语言。

PreviousQuaternionNextRotationMatrix

Last updated 1 month ago

Was this helpful?