✍️
mathematics_basic_for_ML
  • README
  • README
    • Summary
    • Geometry
      • EulerAngle
      • Gimbal lock
      • Quaternion
      • RiemannianManifolds
      • RotationMatrix
      • SphericalHarmonics
    • Information
      • Divergence
      • 信息熵 entropy
    • LinearAlgebra
      • 2D仿射变换(2D Affine Transformation)
      • 2DTransformation
      • 3D变换(3D Transformation)
      • ComplexTransformation
      • Conjugate
      • Hessian
      • IllConditioning
      • 逆变换(Inverse transform)
      • SVD
      • det
      • eigendecomposition
      • 矩阵
      • norm
      • orthogonal
      • special_matrix
      • trace
      • vector
    • Mathematics
      • Complex
      • ExponentialDecay
      • average
      • calculus
      • convex
      • derivative
      • 距离
      • function
      • space
      • Formula
        • euler
        • jensen
        • taylor
        • trigonometric
    • Numbers
      • 几何级数
      • SpecialNumbers
    • NumericalComputation
      • ConstrainedOptimization
      • GradientDescent
      • Newton
      • Nominal
      • ODE_SDE
      • Preprocessing
    • Probability
      • bayes
      • distribution
      • expectation_variance
      • 贝叶斯公式
      • functions
      • likelihood
      • mixture_distribution
      • 一些术语
      • probability_distribution
Powered by GitBook
On this page
  • 和差角公式
  • 积分公式

Was this helpful?

  1. README
  2. Mathematics
  3. Formula

trigonometric

PrevioustaylorNextNumbers

Last updated 2 years ago

Was this helpful?

和差角公式

cos⁡(a+b)=cos⁡acos⁡b−sin⁡asin⁡bcos⁡(a−b)=cos⁡acos⁡b+sin⁡asin⁡bsin⁡(a+b)=sin⁡acos⁡b+cos⁡asin⁡bsin⁡(a−b)=sin⁡acos⁡b−cos⁡asin⁡btan⁡(a+b)=tan⁡a+tan⁡b1−tan⁡atan⁡btan⁡(a−b)=tan⁡a−tan⁡b1+tan⁡atan⁡b\begin{aligned} \cos(a+b) = \cos a\cos b - \sin a\sin b \\ \cos(a-b) = \cos a\cos b + \sin a\sin b \\ \sin(a+b) = \sin a\cos b + \cos a\sin b \\ \sin(a-b) = \sin a\cos b - \cos a\sin b \\ \tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \\ \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \end{aligned}cos(a+b)=cosacosb−sinasinbcos(a−b)=cosacosb+sinasinbsin(a+b)=sinacosb+cosasinbsin(a−b)=sinacosb−cosasinbtan(a+b)=1−tanatanbtana+tanb​tan(a−b)=1+tanatanbtana−tanb​​

积分公式

∫−T2T2cos⁡(nωt)sin⁡(mωt)dt=0∫−T2T2cos⁡(nωt)cos⁡(mωt)dt={T2,n=m0,n≠m∫−T2T2sin⁡(nωt)sin⁡(mωt)dt={0,n=mT2,n≠m\begin{aligned} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t)\sin(m\omega t)dt &=& 0 \\ \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega t)\cos(m\omega t)dt &=& \begin{cases} \frac{T}{2}, && n = m \\ 0, && n \neq m \end{cases} \\ \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(n\omega t)\sin(m\omega t)dt &=& \begin{cases} 0, && n = m \\ \frac{T}{2}, && n \neq m \end{cases} \end{aligned}∫−2T​2T​​cos(nωt)sin(mωt)dt∫−2T​2T​​cos(nωt)cos(mωt)dt∫−2T​2T​​sin(nωt)sin(mωt)dt​===​0{2T​,0,​​n=mn=m​{0,2T​,​​n=mn=m​​