ConstrainedOptimization

约束优化是指在x的某些集合S中找到f(x)的最大值或最小值。 集合S内的点称为s的可行点。

求解方法:KKT KKT方法是将原始的约束优化问题转换为一无约束的优化问题。

  1. 将S描述为m个等式g(i)(x)=0g^{(i)}(x)=0和n个不等式h(j)(x)<0h^{(j)}(x)<0

  2. 为每个约束引入新的变量λi\lambda_iαj\alpha_j

  3. 定义广义Lagrangian函数为:

L(x,λ,α)=f(x)+iλig(i)(x)+jαjh(j)(x)L(x,\lambda,\alpha) = f(x) + \sum_i \lambda_i g^{(i)}(x) + \sum_j \alpha_j h^{(j)}(x)
  1. 通过优化无约束的广义Lagrangian 解决约束最小化问题。以下两个公式具有相同的最优点集x。

minxmaxλmaxα,α>0L(x,λ,α)(1)minxSf(x)(2)\begin{aligned} \min_x\max_{\lambda}\max_{\alpha,\alpha>0}L(x,\lambda,\alpha) && (1)\\ \min_{x\in S}f(x) && (2) \end{aligned}

在公式(1)中,保证可行点不是最佳,可行点范围内的最优点不变。

[?]后面的不太懂

Last updated