✍️
mathematics_basic_for_ML
  • README
  • README
    • Summary
    • Geometry
      • EulerAngle
      • Gimbal lock
      • Quaternion
      • RiemannianManifolds
      • RotationMatrix
      • SphericalHarmonics
    • Information
      • Divergence
      • 信息熵 entropy
    • LinearAlgebra
      • 2D仿射变换(2D Affine Transformation)
      • 2DTransformation
      • 3D变换(3D Transformation)
      • ComplexTransformation
      • Conjugate
      • Hessian
      • IllConditioning
      • 逆变换(Inverse transform)
      • SVD
      • det
      • eigendecomposition
      • 矩阵
      • norm
      • orthogonal
      • special_matrix
      • trace
      • vector
    • Mathematics
      • Complex
      • ExponentialDecay
      • average
      • calculus
      • convex
      • derivative
      • 距离
      • function
      • space
      • Formula
        • euler
        • jensen
        • taylor
        • trigonometric
    • Numbers
      • 几何级数
      • SpecialNumbers
    • NumericalComputation
      • ConstrainedOptimization
      • GradientDescent
      • Newton
      • Nominal
      • ODE_SDE
      • Preprocessing
    • Probability
      • bayes
      • distribution
      • expectation_variance
      • 贝叶斯公式
      • functions
      • likelihood
      • mixture_distribution
      • 一些术语
      • probability_distribution
Powered by GitBook
On this page
  • 矩阵乘法
  • 矩阵转置
  • 矩阵的逆

Was this helpful?

  1. README
  2. LinearAlgebra

矩阵

矩阵乘法

AM×NBN×P=CM×PA_{M\times N}B_{N\times P} = C_{M\times P}AM×N​BN×P​=CM×P​
  • \(AB\ne BA\) (不满足交换律)

  • \(\left( AB \right) C=A\left( BC \right) \) (结合律)

  • \(\left( A+B \right) C=AC+BC\) (分配律)

矩阵与向量相乘时,可以把向量看作是\(M \times 1\)的矩阵

a⋅b=a⊤ba×b=A∗ba \cdot b = a^\top b \\\\ a \times b = A^* ba⋅b=a⊤ba×b=A∗b

矩阵转置

转置:行列互换,用\(A^\top\)表示

  • \(\left( AB \right) ^T=B^TA^T\)

矩阵的逆

逆矩阵:用\(A^{-1}\)表示,方阵才有逆矩阵 I:单位矩阵,对角线上全1、其余元素全0的矩阵

  • \(AA^{-1}=A^{-1}A=I\)

  • \(\left( AB \right) ^{-1}=B^{-1}A^{-1}\)


本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES101_mdbook/

PreviouseigendecompositionNextnorm

Last updated 1 month ago

Was this helpful?