# 特征和标签的可取值范围:
def H(y):
sum = 0
# 计算y可取到的值
k = set(y)
for ck in k:
Pk = y[y==ck].shape[0] / y.shape[0]
if Pk != 0:
sum -= Pk * np.log2(Pk)
return sum
def svm(X, y, feature):
# 计算X的每个特征可取到的值
a = set(X[:,feature])
# 计算数据集的经验熵
HD = H(y)
# 计算特征A对数据集D的经验条件熵H(D|A)
HDA = 0
for value in a:
yDi = y[X[:,feature]==value]
HDA += yDi.shape[0]/y.shape[0] * H(yDi)
return HD - HDA