✏️
LiHang-TongJiXueXiFangFa
  • Introduction
  • 第2章 感知机 - 原始形式
    • 学习策略的推导
    • 梯度下降法的算法过程
    • 梯度下降法的推导过程
    • 梯度下降法的收敛证明
  • 第2章 感知机 - 对偶形式
    • 学习模型的推导
    • 梯度下降法的算法过程
    • 梯度下降法的推导过程
  • 第3章 k近邻算法
    • 模型三要素
    • 构造平衡kd树
    • 用kd树的k近邻搜索
    • kd树的原理与改进
  • 第4章 朴素贝叶斯
    • 模型公式的推导
    • 策略公式的推导
    • 最大似然估计算法过程
    • 贝叶斯估计算法过程
  • 第5章 决策树
    • 决策树的模型
    • 信息增益的算法
    • ID3决策树的生成算法
    • C4.5决策树的生成算法
    • 决策树的剪枝算法
  • 第5章 CART决策树
    • CART树的生成
    • CART树的剪枝
  • 第6章 逻辑回归
    • 二分类逻辑回归模型
    • 多分类逻辑回归模型
  • 第6章 最大熵模型
    • 最大熵的原理
    • 最大熵模型的定义
    • 最大熵的学习过程
    • 根据最大熵的学习过程推导最大熵模型
    • 证明:对偶函数的极大化=模型的极大似然估计
  • 第6章 目标函数最优化问题
    • 改进的迭代尺度法(IIS)
    • IIS算法公式(1)推导
    • A和B的推导
    • 拟牛顿法
  • 第7章 支持向量机
    • 函数间隔与几何间隔
  • 第7章 线性可分SVM
    • 凸二次规划问题推导
    • 支持向量
    • 凸二次规划问题求解
    • 原始问题转换为对偶最优化问题
  • 第7章 线性SVM
    • 原始问题转换为对偶最优化问题
    • 根据 a 求 w 和 b*
    • 支持向量
  • 第7章 非线性SVM
    • 核函数与核技巧
    • 核技巧在SVM中的应用
    • 7.3.2 正定核
    • 常用的核函数
  • 第7章 序列最小最优化算法
    • 选择变量
    • 推导1
    • 推导2
    • 推导3
    • 推导4
    • 推导5:update b
  • 第8章 adaboost
    • 算法过程
    • 训练误差分析
    • 加法模型
    • 前向分步算法
    • adaboost一种特殊的加法模型
  • 第8章 提升树
    • 回归问题提升树的推导
    • 回归问题提升树前向分步算法
    • 一般决策问题梯度提升算法
  • 第9章 EM算法
    • 算法过程
    • Q函数的推导
    • 关于算法的收敛性
    • 高斯混合模型参数估计的EM算法
    • Q函数推导
    • 推导2
  • 第10章 隐马尔可夫模型
    • 定义
    • 概率计算问题 - 直接计算法
    • 概率计算问题 - 前向算法
    • 概率计算问题 - 后向算法
    • 学习问题 - 监督学习
    • 学习问题 - 非监督学习
    • Baum - Welch算法推导
    • 推导1
    • 预测问题 - 近似算法
    • 预测问题 - 维特比算法
    • 维特比算法推导过程
  • 第11章 条件随机场
    • 概率无向图模型
  • 遗留问题
Powered by GitBook
On this page

Was this helpful?

  1. 第4章 朴素贝叶斯

贝叶斯估计算法过程

贝叶斯估计是最大似然估计的改进。

在最大似然估计算法中计算得到的先验概率、条件概率都有可能是0,这会导致最终得到的后验概率没有意义。 贝叶斯估计在最大似然估计的分子分母中同时添加了系数lamda,防止出现计算结果为0的情况。

def NaiveteBayes(T, y, a, Y, x, lam=0):
    # 计算先验概率
    prepro = {}
    for yRange in Y:
        #print (yRange, Y[Y==yRange].shape[0], )
        prepro[yRange] = (y[y==yRange].shape[0]+lam)/(y.shape[0]+lam*Y.shape[0])
    print('先验概率:',prepro)
    # 计算条件概率
    conpro = {}
    for i in range(len(a)):  # 遍历每个特征
        for j in a[i]: # 遍历特征的每个取值
            for k in Y:
                numerator = X[(y==k)&(X[:,i]==j),:].shape[0]+lam
                denominator = X[y==k,:].shape[0]+lam*a[i].shape[0]
                conpro[(i,j, k)] = numerator/denominator
                # print (i,j,k,numerator, denominator)
    print('条件概率:',conpro)
    # 计算后验概率的分子
    postpro = {}
    for yRange in Y:
        pro = 1
        for i in range(x.shape[0]):
            pro = pro * conpro[(i, x[i], yRange)]
            print (conpro[(i, x[i], yRange)])
        postpro[yRange] = pro * prepro[yRange]
    print ('后验概率', postpro)
    # 确定X的分类
    import operator
    return sorted(postpro.items(),   # iterable -- 可迭代对象,在python2中使用A.iteritems(),在python3中使用A.items()
           key=operator.itemgetter(1),   # key -- 主要是用来进行比较的元素,指定可迭代对象中的一个元素来进行排序,这里指基于item的value进行排序
           reverse=True)[0][0]   # reverse -- 排序规则,reverse = True 降序 , reverse = False 升序(默认)。
# 排序结果是一个list
Previous最大似然估计算法过程Next第5章 决策树

Last updated 5 years ago

Was this helpful?