推导4

根据对偶函数的限制条件可知:

0a1C0a2C1\begin{aligned} 0 \le a_1 \le C \\ 0 \le a_2 \le C && {1} \end{aligned}

a2a_2a1a_1表示得:

0ξa2y2y1C2\begin{aligned} 0 \le \frac {-\xi - a_2y_2}{y_1} \le C &&{2} \end{aligned}

由于$y_1$和$y_2$的取值只能是1或者-1,而1或-1会对不等号的化简影响不同,所以把公式(2)分成4种情况:

  1. y1=y2=1y_1 = y_2 = 1

    Cξa2ξa1+a2=ξ\begin{aligned} -C - \xi \le a_2 \le -\xi \\ a_1+a_2=-\xi \end{aligned}

    得:

    C+a1+a2a2newa1+a2-C+a_1+a_2 \le a_2^{new} \le a_1 + a_2
  2. y1=1,y2=1y_1 = 1, y_2 = -1

    ξa2C+ξa2a1=ξ\begin{aligned} \xi \le a_2 \le C+\xi \\ a_2 - a_1 = \xi \end{aligned}

    得:

    a2a1a2newC+a2a1a_2 - a_1 \le a_2^{new} \le C + a_2 - a_1
  3. y1=1,y2=1y_1 = -1, y_2 = 1

    ξa2Cξa2a1=ξ\begin{aligned} -\xi \le a_2 \le C-\xi \\ a_2 - a_1 = -\xi \end{aligned}

    得:

    a2a1a2newC+a2a1a_2 - a_1 \le a_2^{new} \le C + a_2 - a_1
  4. y1=y2=1y_1 = y_2 = -1

    ξCa2ξa1+a2=ξ\begin{aligned} \xi-C \le a_2 \le \xi \\ a_1 + a_2 = \xi \end{aligned}

    得:

    C+a1+a2a2newa1+a2-C+a_1+a_2 \le a_2^{new} \le a_1 + a_2

综合以上结果得: 当y1y2<0时,

max(0,a2a1)a2newmin(C,C+a2a1)\max (0, a_2 - a_1) \le a_2^{new} \le \min(C, C + a_2 - a_1)

当y1y2>0时,

max(0,C+a1+a2)a2newmin(C,a1+a2)\max (0, -C+a_1+a_2) \le a_2^{new} \le \min(C, a_1 + a_2)

Last updated

Was this helpful?