10-3 实现混淆矩阵、精准率、召回率

import numpy as np
from sklearn import datasets

digits = datasets.load_digits()
X = digits.data
y = digits.target.copy()

y[digits.target==9] = 1
y[digits.target!=9] = 0    # 产生极度偏斜的数据

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

准度度

log_reg.score(X_test, y_test)

输出:0.9755555555555555

混淆矩阵

输出结果: array([[403, 2], [ 9, 36]])

精准率

输出结果:0.9473684210526315

召回率

输出结果:0.8

scikit-learn中的混淆矩阵、精准率、召回率

Last updated