10-3 实现混淆矩阵、精准率、召回率
import numpy as np
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target.copy()
y[digits.target==9] = 1
y[digits.target!=9] = 0 # 产生极度偏斜的数据
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)准度度
log_reg.score(X_test, y_test)输出:0.9755555555555555
混淆矩阵
输出结果: array([[403, 2], [ 9, 36]])
精准率
输出结果:0.9473684210526315
召回率
输出结果:0.8
scikit-learn中的混淆矩阵、精准率、召回率
Last updated