📔
liu_yu_bo_play_with_machine_learning
  • README
  • src
    • Introduction
    • Summary
    • Chapter10
      • 第十章:评价分类结果
    • Chapter10
      • 10-2 精确率和召回率
    • Chapter10
      • 10-3 实现混淆矩阵、精准率、召回率
    • Chapter10
      • 10-4 F1 score
    • Chapter10
      • 10-5 Precision-Recall平衡
    • Chapter10
      • 10-6 precision-recall曲线
    • Chapter10
      • 10-7 ROC曲线
    • Chapter10
      • 10-8 多分类问题中的混淆矩阵
    • Chapter11
      • 11-1 什么是支撑向量机
    • Chapter11
      • 11-2 支撑向量机的推导过程
    • Chapter11
      • 11-3 Soft Margin和SVM的正则化
    • Chapter11
      • 11-4 scikit-leran中的SVM
    • Chapter11
      • 11-5 SVM中使用多项式特征
    • Chapter11
      • 11-6 什么是核函数
    • Chapter11
      • 11-7 高斯核函数
    • Chapter11
      • 11-8 scikit-learn中的高斯核函数
    • Chapter11
      • 11-9 SVM思想解决回归问题
    • Chapter12
      • 第十二章:决策树
    • Chapter12
      • 12-2 信息熵
    • Chapter12
      • 12-3 使用信息寻找最优划分
    • Chapter12
      • 12-4 基尼系数
    • Chapter12
      • 12-5 CART和决策树中的超参数
    • Chapter12
      • 12-6 决策树解决回归问题
    • Chapter12
      • 12-7 决策树的局限性
    • Chapter13
      • 第十三章:集成学习和随机森林
    • Chapter13
      • 13-2 soft voting
    • Chapter13
      • 13-3 bagging和pasting
    • Chapter13
      • 13-4 更多关于bagging的讨论
    • Chapter13
      • 13-5 随机森林和extra-trees
    • Chapter13
      • 13-6 ada boosting和gradiesnt boosting
    • Chapter13
      • 13-7 Stacking
    • Chapter4
      • KNN - K近邻算法 - K-Nearest Neighbors
    • Chapter4
      • 4-1
    • Chapter4
      • 4-2
    • Chapter4
      • 4-3 训练数据集,测试数据集
    • Chapter4
      • 4-4 分类准确度
    • Chapter4
      • 4-5
    • Chapter4
      • 4-6 网格搜索
    • Chapter4
      • 4-7
    • Chapter4
      • 4-8 scikit-learn中的Scaler
    • Chapter4
      • 4-9 更多有关K近邻算法的思考
    • Chapter5
      • 线性回归算法
    • Chapter5
      • 5-1
    • Chapter5
      • 5-10 线性回归的可解释性和更多思考
    • Chapter5
      • 5-2 最小二乘法
    • Chapter5
      • 5-3 简单线性回归的实现
    • Chapter5
      • 5-4 参数计算向量化
    • Chapter5
      • 5-5 衡量线性回归算法的指标
    • Chapter5
      • 5-6 最好的衡量线性回归法的指标 R Squared
    • Chapter5
      • 5-7 简单线性回归和正规方程解
    • Chapter5
      • 5-8 实现多元线性回归
    • Chapter5
      • 5-9 scikit-learn中的回归算法
    • Chapter6
      • 第六章:梯度下降法
    • Chapter6
      • 6-2 模拟实现梯度下降法
    • Chapter6
      • 6-3 多元线性回归中的梯度下降法
    • Chapter6
      • 6-4 在线性回归模型中使用梯度下降法
    • Chapter6
      • 6-5 梯度下降的向量化
    • Chapter6
      • 6-6 随机梯度下降
    • Chapter6
      • 6-7 代码实现随机梯度下降
    • Chapter6
      • 6-8 调试梯度下降法
    • Chapter6
      • 6-9 有关梯度下降法的更多深入讨论
    • Chapter7
      • 主成分分析法 PCA Principal Component Analysis
    • Chapter7
      • 7-1
    • Chapter7
      • 7-2 使用梯度上升法求解主成分分析问题
    • Chapter7
      • 7-3 代码实现主成分分析问题
    • Chapter7
      • 7-4 求数据的前N个主成分
    • Chapter7
      • 7-5 高维数据向低维数据映射
    • Chapter7
      • 7-6 scikit learn中的PCA
    • Chapter7
      • 7-7 MNIST数据集
    • Chapter7
      • 7-8 使用PCA降噪
    • Chapter7
      • 7-9 人脸识别和特征脸(未完成)
    • Chapter8
      • 第八章:多项式回归与模型泛化
    • Chapter8
      • 8-10 L1,L2和弹性网络
    • Chapter8
      • 8-2 scikit-learn中的多项式回归和pipeline
    • Chapter8
      • 8-3 过拟合和欠拟合
    • Chapter8
      • 8-4 为什么要训练数据集和测试数据集
    • Chapter8
      • 8-5 学习曲线
    • Chapter8
      • 8-6 验证数据集与交叉验证
    • Chapter8
      • 8-7 偏差方差权衡 Bias Variance Trade off
    • Chapter8
      • 8-8 模型正则化 Regularization
    • Chapter8
      • 8-9 LASSO Regularization
    • Chapter9
      • 第九章:逻辑回归
    • Chapter9
      • 9-2 逻辑回归的损失函数
    • Chapter9
      • 9-3 逻辑回归算法损失函数的梯度
    • Chapter9
      • 9-4 实现逻辑回归算法
    • Chapter9
      • 9-5 决策边界
    • Chapter9
      • 9-6 在逻辑回归中使用多项式特征
    • Chapter9
      • 9-7 scikit-learn中的逻辑回归
    • Chapter9
      • 9-8 OvR与OvO
Powered by GitBook
On this page
  • 使用真实数据测试PCA降维对效率和准确度的影响
  • 真实数据
  • 几种降维结果比较
  • 选择合适的降维效果
  • 对原始数据降至2维的结果也有一定参考意义
  1. src
  2. Chapter7

7-6 scikit learn中的PCA

PreviousChapter7NextChapter7

Last updated 4 years ago

沿用7-5中的测试数据,使用scikit-learn中的PCA

from sklearn.decomposition import PCA

pca = PCA(n_components=1)
pca.fit(X)

输入:pca.components_ 输出:array([[-0.75366744, -0.65725595]]) 这个轴与7-5中的计算结果是相反的。因为scikit-learn中不是什么梯度下降法而是什么数学方法计算的。 轴的方向相反不影响算法的结果

对比原始数据与降维再恢复后的数据

X_reduction = pca.transform(X)
X_restore = pca.inverse_transform(X_reduction)

plt.scatter(X[:, 0], X[:, 1], color='b', alpha=0.5)
plt.scatter(X_restore[:, 0], X_restore[:, 1], color='r', alpha=0.5)
plt.show()

使用真实数据测试PCA降维对效率和准确度的影响

真实数据

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

digits = datasets.load_digits()
X = digits.data
y = digits.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

几种降维结果比较

PCA后的维数

运行时间

score

不降维

82.9 ms

0.9866666666666667

2

2.2

0.6066666666666667

28

1,05 时间更少了?

0.98

结论: 如果n_components选择合适,会大大减少训练时间而略微减少分类准确度,这样做是值得的。

选择合适的降维效果

确定新坐标系中每个维度保存了原数据的方差百分比

pca = PCA(n_components=X_train.shape[1])
pca.fit(X_train)
pca.explained_variance_ratio_
plt.plot([i for i in range(X_train.shape[1])],
    [np.sum(pca.explained_variance_ratio_[:i+1]) for  i in range(X_train.shape[1])])
plt.show()

保留原始数据95%的方差

pca = PCA(0.95)
pca.fit(X_train)
pca.explained_variance_ratio_

对原始数据降至2维的结果也有一定参考意义

pca = PCA(n_components=2)
pca.fit(X)
X_reduction = pca.transform(X)

for i in range(10):
    plt.scatter(X_reduction[y==i, 0], X_reduction[y==i,1], alpha=0.8)
plt.show()

假如只是要区分图中紫色的数据和红色的数据,降到2维就足够了

输出结果:

输出结果: 这张图表示了前N个维度所占方差的百分比