Copy import numpy as np
import matplotlib . pyplot as plt
from sklearn import datasets
X , y = datasets . make_moons ()
X , y = datasets . make_moons (noise = 0.15 , random_state = 666 )
plt . scatter (X[y == 0 , 0 ],X[y == 0 , 1 ])
plt . scatter (X[y == 1 , 0 ],X[y == 1 , 1 ])
plt . show ()
Copy from sklearn . preprocessing import StandardScaler
from sklearn . svm import SVC
from sklearn . pipeline import Pipeline
def RBFKernelSVC ( gamma = 1.0 ):
return Pipeline ([
( 'std_scaler' , StandardScaler ()),
( 'rbfSVC' , SVC (kernel = 'rbf' , gamma = gamma))
])
svc = PolynomialKernelSVC ()
svc . fit (X, y)
Copy def plot_decision_boundary ( model , axis ):
x0 , x1 = np . meshgrid (
np. linspace (axis[ 0 ], axis[ 1 ], int ((axis[ 1 ] - axis[ 0 ]) * 100 )). reshape ( - 1 , 1 ),
np. linspace (axis[ 2 ], axis[ 3 ], int ((axis[ 3 ] - axis[ 2 ]) * 100 )). reshape ( - 1 , 1 )
)
X_new = np . c_ [ x0 . ravel (), x1 . ravel ()]
y_predict = model . predict (X_new)
zz = y_predict . reshape (x0.shape)
from matplotlib . colors import ListedColormap
custom_cmap = ListedColormap ([ '#EF9A9A' , '#FFF59D' , '#90CAF9' ])
plt . contourf (x0, x1, zz, cmap = custom_cmap)
plot_decision_boundary (svc, axis = [ - 1.5 , 2.5 , - 1.0 , 1.5 ])
plt . scatter (X[y == 0 , 0 ],X[y == 0 , 1 ])
plt . scatter (X[y == 1 , 0 ],X[y == 1 , 1 ])
plt . show ()