📔
liu_yu_bo_play_with_machine_learning
  • README
  • src
    • Introduction
    • Summary
    • Chapter10
      • 第十章:评价分类结果
    • Chapter10
      • 10-2 精确率和召回率
    • Chapter10
      • 10-3 实现混淆矩阵、精准率、召回率
    • Chapter10
      • 10-4 F1 score
    • Chapter10
      • 10-5 Precision-Recall平衡
    • Chapter10
      • 10-6 precision-recall曲线
    • Chapter10
      • 10-7 ROC曲线
    • Chapter10
      • 10-8 多分类问题中的混淆矩阵
    • Chapter11
      • 11-1 什么是支撑向量机
    • Chapter11
      • 11-2 支撑向量机的推导过程
    • Chapter11
      • 11-3 Soft Margin和SVM的正则化
    • Chapter11
      • 11-4 scikit-leran中的SVM
    • Chapter11
      • 11-5 SVM中使用多项式特征
    • Chapter11
      • 11-6 什么是核函数
    • Chapter11
      • 11-7 高斯核函数
    • Chapter11
      • 11-8 scikit-learn中的高斯核函数
    • Chapter11
      • 11-9 SVM思想解决回归问题
    • Chapter12
      • 第十二章:决策树
    • Chapter12
      • 12-2 信息熵
    • Chapter12
      • 12-3 使用信息寻找最优划分
    • Chapter12
      • 12-4 基尼系数
    • Chapter12
      • 12-5 CART和决策树中的超参数
    • Chapter12
      • 12-6 决策树解决回归问题
    • Chapter12
      • 12-7 决策树的局限性
    • Chapter13
      • 第十三章:集成学习和随机森林
    • Chapter13
      • 13-2 soft voting
    • Chapter13
      • 13-3 bagging和pasting
    • Chapter13
      • 13-4 更多关于bagging的讨论
    • Chapter13
      • 13-5 随机森林和extra-trees
    • Chapter13
      • 13-6 ada boosting和gradiesnt boosting
    • Chapter13
      • 13-7 Stacking
    • Chapter4
      • KNN - K近邻算法 - K-Nearest Neighbors
    • Chapter4
      • 4-1
    • Chapter4
      • 4-2
    • Chapter4
      • 4-3 训练数据集,测试数据集
    • Chapter4
      • 4-4 分类准确度
    • Chapter4
      • 4-5
    • Chapter4
      • 4-6 网格搜索
    • Chapter4
      • 4-7
    • Chapter4
      • 4-8 scikit-learn中的Scaler
    • Chapter4
      • 4-9 更多有关K近邻算法的思考
    • Chapter5
      • 线性回归算法
    • Chapter5
      • 5-1
    • Chapter5
      • 5-10 线性回归的可解释性和更多思考
    • Chapter5
      • 5-2 最小二乘法
    • Chapter5
      • 5-3 简单线性回归的实现
    • Chapter5
      • 5-4 参数计算向量化
    • Chapter5
      • 5-5 衡量线性回归算法的指标
    • Chapter5
      • 5-6 最好的衡量线性回归法的指标 R Squared
    • Chapter5
      • 5-7 简单线性回归和正规方程解
    • Chapter5
      • 5-8 实现多元线性回归
    • Chapter5
      • 5-9 scikit-learn中的回归算法
    • Chapter6
      • 第六章:梯度下降法
    • Chapter6
      • 6-2 模拟实现梯度下降法
    • Chapter6
      • 6-3 多元线性回归中的梯度下降法
    • Chapter6
      • 6-4 在线性回归模型中使用梯度下降法
    • Chapter6
      • 6-5 梯度下降的向量化
    • Chapter6
      • 6-6 随机梯度下降
    • Chapter6
      • 6-7 代码实现随机梯度下降
    • Chapter6
      • 6-8 调试梯度下降法
    • Chapter6
      • 6-9 有关梯度下降法的更多深入讨论
    • Chapter7
      • 主成分分析法 PCA Principal Component Analysis
    • Chapter7
      • 7-1
    • Chapter7
      • 7-2 使用梯度上升法求解主成分分析问题
    • Chapter7
      • 7-3 代码实现主成分分析问题
    • Chapter7
      • 7-4 求数据的前N个主成分
    • Chapter7
      • 7-5 高维数据向低维数据映射
    • Chapter7
      • 7-6 scikit learn中的PCA
    • Chapter7
      • 7-7 MNIST数据集
    • Chapter7
      • 7-8 使用PCA降噪
    • Chapter7
      • 7-9 人脸识别和特征脸(未完成)
    • Chapter8
      • 第八章:多项式回归与模型泛化
    • Chapter8
      • 8-10 L1,L2和弹性网络
    • Chapter8
      • 8-2 scikit-learn中的多项式回归和pipeline
    • Chapter8
      • 8-3 过拟合和欠拟合
    • Chapter8
      • 8-4 为什么要训练数据集和测试数据集
    • Chapter8
      • 8-5 学习曲线
    • Chapter8
      • 8-6 验证数据集与交叉验证
    • Chapter8
      • 8-7 偏差方差权衡 Bias Variance Trade off
    • Chapter8
      • 8-8 模型正则化 Regularization
    • Chapter8
      • 8-9 LASSO Regularization
    • Chapter9
      • 第九章:逻辑回归
    • Chapter9
      • 9-2 逻辑回归的损失函数
    • Chapter9
      • 9-3 逻辑回归算法损失函数的梯度
    • Chapter9
      • 9-4 实现逻辑回归算法
    • Chapter9
      • 9-5 决策边界
    • Chapter9
      • 9-6 在逻辑回归中使用多项式特征
    • Chapter9
      • 9-7 scikit-learn中的逻辑回归
    • Chapter9
      • 9-8 OvR与OvO
Powered by GitBook
On this page
  • 测试数据
  • 批量梯度下降法
  • 算法
  • 测试性能
  • 随机梯度下降法
  • 算法
  • 测试性能
  1. src
  2. Chapter6

6-6 随机梯度下降

PreviousChapter6NextChapter6

Last updated 5 years ago

常规的梯度下降法,又叫批量梯度下降法,Batch Gradient Descent

问题:当样本数m很大时会非常耗时

解决方法:每次只对其中一个样本做计算

把去掉m后计算的公式作为搜索的方向。 由于不能保证这种方法计算得到的方向一定是损失最小的方向,甚至不能保证一定是损失函数减小的方向。也不能找到最小值的位置。 但仍然能到函数的最小值附近。 如果m非常大,可以用一定的精度来换时间。

测试数据

import numpy as np
import matplotlib.pyplot as plt

m = 100000

x = np.random.normal(size=m)
X = x.reshape(-1, 1)
y = 4. * x + 3. + np.random.normal(0, 3, size=m)

批量梯度下降法

算法

def J(theta, X_b, y):
    try:
        return np.sum((y - X_b.dot(theta))**2) / len(X_b)
    except:
        return float('inf')

def dJ(theta, X_b, y):
    return X_b.T.dot(X_b.dot(theta)-y) * 2. / len(X_b)

def gradient_descent(X_b, y, initial_theta, eta, n_iters = 1e4, epsilon=1e-8):
    theta = initial_theta
    i_iter = 0
    while i_iter < n_iters:
        gradient = dJ(theta, X_b, y)
        last_theta = theta
        theta = theta - eta * gradient
        if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
            break
        i_iter += 1
    return theta

测试性能

%%time
X_b = np.hstack([np.ones((len(X), 1)), X])
initial_theta = np.zeros(X_b.shape[1])
eta = 0.01
theta = gradient_descent(X_b, y, initial_theta, eta)

耗时:2s theta = array([3.00456203, 3.98777265])

随机梯度下降法

算法

def J(theta, X_b, y):
    try:
        return np.sum((y - X_b.dot(theta))**2) / len(X_b)
    except:
        return float('inf')

def dJ_sgd(theta, X_b_i, y_i):
    return X_b_i.T.dot(X_b_i.dot(theta)-y_i) * 2.

def sgd(X_b, y, initial_theta, n_iters):
    t0 = 5
    t1 = 50

    def learning_rate(t):
        return t0 / (t + t1)

    theta = initial_theta
    i_iter = 0
    for i_iter in range (n_iters):
        rand_i = np.random.randint(len(X_b))
        gradient = dJ_sgd(theta, X_b[rand_i], y[rand_i])
        last_theta = theta
        theta = theta - learning_rate(i_iter) * gradient
        # 不能保证梯度一直是减小的
#         if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
#             break
    return theta

测试性能

%%time
X_b = np.hstack([np.ones((len(X), 1)), X])
initial_theta = np.zeros(X_b.shape[1])
theta = sgd(X_b, y, initial_theta, n_iters=len(X_b)//3)   # 这里只检查了1/3样本,对于多元线性回归问题不能这样

耗时:471ms array([2.94954458, 3.95898273])

时间大幅度减少而结果和批量梯度下降法差不多。 当m特别大时,可以牺牲一定的精度来换取时间。

在随机梯度下降法过程中,学习率很重要。 如果学习率取固定值,很有可以到了最小值附近后又跳出去了。 学习率应逐渐递减。(模拟退火的思想) 通常a取5,b取50