4-2
代码实现KNN算法
import numpy as np
from math import sqrt
from collections import Counter
def kNN_classify(k, X_train, y_train, x):
assert 1 <= k <= X_train.shape[0], "k must be valid"
assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train"
assert X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train-x)**2)) for x_train in X_train]
nearst = np.argsort(distances)
topK_y = [y_train[i] for i in nearst[:k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
准备数据
import numpy as np
raw_data_X = [[3.39, 2.33],
[3.11, 1.78],
[1.34, 3.36],
[3.58, 4.67],
[2.28, 2.86],
[7.42, 4.69],
[5.74, 3.53],
[9.17, 2.51],
[7.79, 3.42],
[7.93, 0.79]
]
raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
X_train = raw_data_X
y_train = raw_data_y
x = np.array([8.09, 3.36])
调用算法
predict_y = kNN_classify(6, X_train, y_train, x)
运行结果:predict_y = 1
什么是机器学习
KNN是一个不需要训练的算法 KNN没有模型,或者说训练数据就是它的模型
使用scikit-learn中的kNN
错误写法
from sklearn.neighbors import KNeighborsClassifier
kNN_classifier.fit(X_train, y_train)
kNN_classifier.predict(x)
正确写法
from sklearn.neighbors import KNeighborsClassifier
kNN_classifier.fit(X_train, y_train)
X_predict = x.reshape(1, -1)
y_predict = kNN_classifier.predict(X_predict)
运行结果:predict_y[0] = 1
重新整理我们的kNN的代码
封装成sklearn风格的类
import numpy as np
from math import sqrt
from collections import Counter
class kNNClassifier:
def __init__(self, k):
"""初始化kNN分类器"""
assert k >= 1, "K must be valid!"
self.k = k
self._X_train = None
self._y_train = None
def fit(self, X_train, y_train):
"""根据训练数据集X_train和y_train训练kNN分类器"""
assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train"
assert self.k <= X_train.shape[0], "the size of X_train must be at least k"
self._X_train = X_train
self._y_train = y_train
return self
def predict(self, X_predict):
"""给定待预测数据集X_predict, 返回表示X_predict的结果向量"""
assert self._X_train is not None and self._X_train is not None, "must fit before predict"
assert self._X_train.shape[1] == X_predict.shape[1], "the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self, x):
"""给定单个待测数据x,返回x的预测结果"""
assert self._X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train-x)**2)) for x_train in self._X_train]
nearst = np.argsort(distances)
topK_y = [self._y_train[i] for i in nearst[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
def __repr__(self):
return "KNN(k=%d)" % self.k
使用kNNClassifier
knn_clf = kNNClassifier(k=6)
knn_clf.fit(X_train, y_train)
y_predict = knn_clf.predict(X_predict)
运行结果:predict_y[0] = 1
Last updated