📔
liu_yu_bo_play_with_machine_learning
  • README
  • src
    • Introduction
    • Summary
    • Chapter10
      • 第十章:评价分类结果
    • Chapter10
      • 10-2 精确率和召回率
    • Chapter10
      • 10-3 实现混淆矩阵、精准率、召回率
    • Chapter10
      • 10-4 F1 score
    • Chapter10
      • 10-5 Precision-Recall平衡
    • Chapter10
      • 10-6 precision-recall曲线
    • Chapter10
      • 10-7 ROC曲线
    • Chapter10
      • 10-8 多分类问题中的混淆矩阵
    • Chapter11
      • 11-1 什么是支撑向量机
    • Chapter11
      • 11-2 支撑向量机的推导过程
    • Chapter11
      • 11-3 Soft Margin和SVM的正则化
    • Chapter11
      • 11-4 scikit-leran中的SVM
    • Chapter11
      • 11-5 SVM中使用多项式特征
    • Chapter11
      • 11-6 什么是核函数
    • Chapter11
      • 11-7 高斯核函数
    • Chapter11
      • 11-8 scikit-learn中的高斯核函数
    • Chapter11
      • 11-9 SVM思想解决回归问题
    • Chapter12
      • 第十二章:决策树
    • Chapter12
      • 12-2 信息熵
    • Chapter12
      • 12-3 使用信息寻找最优划分
    • Chapter12
      • 12-4 基尼系数
    • Chapter12
      • 12-5 CART和决策树中的超参数
    • Chapter12
      • 12-6 决策树解决回归问题
    • Chapter12
      • 12-7 决策树的局限性
    • Chapter13
      • 第十三章:集成学习和随机森林
    • Chapter13
      • 13-2 soft voting
    • Chapter13
      • 13-3 bagging和pasting
    • Chapter13
      • 13-4 更多关于bagging的讨论
    • Chapter13
      • 13-5 随机森林和extra-trees
    • Chapter13
      • 13-6 ada boosting和gradiesnt boosting
    • Chapter13
      • 13-7 Stacking
    • Chapter4
      • KNN - K近邻算法 - K-Nearest Neighbors
    • Chapter4
      • 4-1
    • Chapter4
      • 4-2
    • Chapter4
      • 4-3 训练数据集,测试数据集
    • Chapter4
      • 4-4 分类准确度
    • Chapter4
      • 4-5
    • Chapter4
      • 4-6 网格搜索
    • Chapter4
      • 4-7
    • Chapter4
      • 4-8 scikit-learn中的Scaler
    • Chapter4
      • 4-9 更多有关K近邻算法的思考
    • Chapter5
      • 线性回归算法
    • Chapter5
      • 5-1
    • Chapter5
      • 5-10 线性回归的可解释性和更多思考
    • Chapter5
      • 5-2 最小二乘法
    • Chapter5
      • 5-3 简单线性回归的实现
    • Chapter5
      • 5-4 参数计算向量化
    • Chapter5
      • 5-5 衡量线性回归算法的指标
    • Chapter5
      • 5-6 最好的衡量线性回归法的指标 R Squared
    • Chapter5
      • 5-7 简单线性回归和正规方程解
    • Chapter5
      • 5-8 实现多元线性回归
    • Chapter5
      • 5-9 scikit-learn中的回归算法
    • Chapter6
      • 第六章:梯度下降法
    • Chapter6
      • 6-2 模拟实现梯度下降法
    • Chapter6
      • 6-3 多元线性回归中的梯度下降法
    • Chapter6
      • 6-4 在线性回归模型中使用梯度下降法
    • Chapter6
      • 6-5 梯度下降的向量化
    • Chapter6
      • 6-6 随机梯度下降
    • Chapter6
      • 6-7 代码实现随机梯度下降
    • Chapter6
      • 6-8 调试梯度下降法
    • Chapter6
      • 6-9 有关梯度下降法的更多深入讨论
    • Chapter7
      • 主成分分析法 PCA Principal Component Analysis
    • Chapter7
      • 7-1
    • Chapter7
      • 7-2 使用梯度上升法求解主成分分析问题
    • Chapter7
      • 7-3 代码实现主成分分析问题
    • Chapter7
      • 7-4 求数据的前N个主成分
    • Chapter7
      • 7-5 高维数据向低维数据映射
    • Chapter7
      • 7-6 scikit learn中的PCA
    • Chapter7
      • 7-7 MNIST数据集
    • Chapter7
      • 7-8 使用PCA降噪
    • Chapter7
      • 7-9 人脸识别和特征脸(未完成)
    • Chapter8
      • 第八章:多项式回归与模型泛化
    • Chapter8
      • 8-10 L1,L2和弹性网络
    • Chapter8
      • 8-2 scikit-learn中的多项式回归和pipeline
    • Chapter8
      • 8-3 过拟合和欠拟合
    • Chapter8
      • 8-4 为什么要训练数据集和测试数据集
    • Chapter8
      • 8-5 学习曲线
    • Chapter8
      • 8-6 验证数据集与交叉验证
    • Chapter8
      • 8-7 偏差方差权衡 Bias Variance Trade off
    • Chapter8
      • 8-8 模型正则化 Regularization
    • Chapter8
      • 8-9 LASSO Regularization
    • Chapter9
      • 第九章:逻辑回归
    • Chapter9
      • 9-2 逻辑回归的损失函数
    • Chapter9
      • 9-3 逻辑回归算法损失函数的梯度
    • Chapter9
      • 9-4 实现逻辑回归算法
    • Chapter9
      • 9-5 决策边界
    • Chapter9
      • 9-6 在逻辑回归中使用多项式特征
    • Chapter9
      • 9-7 scikit-learn中的逻辑回归
    • Chapter9
      • 9-8 OvR与OvO
Powered by GitBook
On this page
  • 代码实现KNN算法
  • 准备数据
  • 调用算法
  • 什么是机器学习
  • 使用scikit-learn中的kNN
  • 错误写法
  • 正确写法
  • 重新整理我们的kNN的代码
  • 封装成sklearn风格的类
  • 使用kNNClassifier
  1. src
  2. Chapter4

4-2

代码实现KNN算法

import numpy as np
from math import sqrt
from collections import Counter

def kNN_classify(k, X_train, y_train, x):
    assert 1 <= k <= X_train.shape[0], "k must be valid"
    assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train"
    assert X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train"

    distances = [sqrt(np.sum((x_train-x)**2)) for x_train in X_train]
    nearst = np.argsort(distances)

    topK_y = [y_train[i] for i in nearst[:k]]
    votes = Counter(topK_y)

    return votes.most_common(1)[0][0]

准备数据

import numpy as np
raw_data_X = [[3.39, 2.33],
              [3.11, 1.78],
              [1.34, 3.36],
              [3.58, 4.67],
              [2.28, 2.86],
              [7.42, 4.69],
              [5.74, 3.53],
              [9.17, 2.51],
              [7.79, 3.42],
              [7.93, 0.79]
             ]
raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

X_train = raw_data_X
y_train = raw_data_y

x = np.array([8.09, 3.36])

调用算法

predict_y = kNN_classify(6, X_train, y_train, x)

运行结果:predict_y = 1

什么是机器学习

KNN是一个不需要训练的算法 KNN没有模型,或者说训练数据就是它的模型

使用scikit-learn中的kNN

错误写法

from sklearn.neighbors import KNeighborsClassifier

kNN_classifier.fit(X_train, y_train)
kNN_classifier.predict(x)

正确写法

from sklearn.neighbors import KNeighborsClassifier

kNN_classifier.fit(X_train, y_train)
X_predict = x.reshape(1, -1)
y_predict = kNN_classifier.predict(X_predict)

运行结果:predict_y[0] = 1

重新整理我们的kNN的代码

封装成sklearn风格的类

import numpy as np
from math import sqrt
from collections import Counter

class kNNClassifier:

    def __init__(self, k):
        """初始化kNN分类器"""
        assert k >= 1, "K must be valid!"
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):
        """根据训练数据集X_train和y_train训练kNN分类器"""
        assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train"
        assert self.k <= X_train.shape[0], "the size of X_train must be at least k"

        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self, X_predict):
        """给定待预测数据集X_predict, 返回表示X_predict的结果向量"""
        assert self._X_train is not None and self._X_train is not None, "must fit before predict"
        assert self._X_train.shape[1] == X_predict.shape[1], "the feature number of X_predict must be equal to X_train"

        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self, x):
        """给定单个待测数据x,返回x的预测结果"""
        assert self._X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train"

        distances = [sqrt(np.sum((x_train-x)**2)) for x_train in self._X_train]
        nearst = np.argsort(distances)

        topK_y = [self._y_train[i] for i in nearst[:self.k]]
        votes = Counter(topK_y)

        return votes.most_common(1)[0][0]

    def __repr__(self):
        return "KNN(k=%d)" % self.k

使用kNNClassifier

knn_clf = kNNClassifier(k=6)
knn_clf.fit(X_train, y_train)
y_predict = knn_clf.predict(X_predict)

运行结果:predict_y[0] = 1

PreviousChapter4NextChapter4

Last updated 3 years ago

这样写会报错: 原因是,predict为了兼容多组测试数据的场景,要求参数是个矩阵