4-5
超参数和模型参数
如何寻找好的超参数
寻找最好的K
best_score = 0.0
best_k = -1
for k in range(1, 11):
knn_clf = KNeighborsClassifier(n_neighbors=k)
knn_clf.fit(X_train, y_train)
score = knn_clf.score(X_test, y_test)
if score > best_score:
best_k = k
best_score = score
print("best_k = ", best_k)
print("best_score = ", best_score)KNN的超参数weights

KNN的超参数p
关于距离的更多定义


Last updated

