📔
liu_yu_bo_play_with_machine_learning
  • README
  • src
    • Introduction
    • Summary
    • Chapter10
      • 第十章:评价分类结果
    • Chapter10
      • 10-2 精确率和召回率
    • Chapter10
      • 10-3 实现混淆矩阵、精准率、召回率
    • Chapter10
      • 10-4 F1 score
    • Chapter10
      • 10-5 Precision-Recall平衡
    • Chapter10
      • 10-6 precision-recall曲线
    • Chapter10
      • 10-7 ROC曲线
    • Chapter10
      • 10-8 多分类问题中的混淆矩阵
    • Chapter11
      • 11-1 什么是支撑向量机
    • Chapter11
      • 11-2 支撑向量机的推导过程
    • Chapter11
      • 11-3 Soft Margin和SVM的正则化
    • Chapter11
      • 11-4 scikit-leran中的SVM
    • Chapter11
      • 11-5 SVM中使用多项式特征
    • Chapter11
      • 11-6 什么是核函数
    • Chapter11
      • 11-7 高斯核函数
    • Chapter11
      • 11-8 scikit-learn中的高斯核函数
    • Chapter11
      • 11-9 SVM思想解决回归问题
    • Chapter12
      • 第十二章:决策树
    • Chapter12
      • 12-2 信息熵
    • Chapter12
      • 12-3 使用信息寻找最优划分
    • Chapter12
      • 12-4 基尼系数
    • Chapter12
      • 12-5 CART和决策树中的超参数
    • Chapter12
      • 12-6 决策树解决回归问题
    • Chapter12
      • 12-7 决策树的局限性
    • Chapter13
      • 第十三章:集成学习和随机森林
    • Chapter13
      • 13-2 soft voting
    • Chapter13
      • 13-3 bagging和pasting
    • Chapter13
      • 13-4 更多关于bagging的讨论
    • Chapter13
      • 13-5 随机森林和extra-trees
    • Chapter13
      • 13-6 ada boosting和gradiesnt boosting
    • Chapter13
      • 13-7 Stacking
    • Chapter4
      • KNN - K近邻算法 - K-Nearest Neighbors
    • Chapter4
      • 4-1
    • Chapter4
      • 4-2
    • Chapter4
      • 4-3 训练数据集,测试数据集
    • Chapter4
      • 4-4 分类准确度
    • Chapter4
      • 4-5
    • Chapter4
      • 4-6 网格搜索
    • Chapter4
      • 4-7
    • Chapter4
      • 4-8 scikit-learn中的Scaler
    • Chapter4
      • 4-9 更多有关K近邻算法的思考
    • Chapter5
      • 线性回归算法
    • Chapter5
      • 5-1
    • Chapter5
      • 5-10 线性回归的可解释性和更多思考
    • Chapter5
      • 5-2 最小二乘法
    • Chapter5
      • 5-3 简单线性回归的实现
    • Chapter5
      • 5-4 参数计算向量化
    • Chapter5
      • 5-5 衡量线性回归算法的指标
    • Chapter5
      • 5-6 最好的衡量线性回归法的指标 R Squared
    • Chapter5
      • 5-7 简单线性回归和正规方程解
    • Chapter5
      • 5-8 实现多元线性回归
    • Chapter5
      • 5-9 scikit-learn中的回归算法
    • Chapter6
      • 第六章:梯度下降法
    • Chapter6
      • 6-2 模拟实现梯度下降法
    • Chapter6
      • 6-3 多元线性回归中的梯度下降法
    • Chapter6
      • 6-4 在线性回归模型中使用梯度下降法
    • Chapter6
      • 6-5 梯度下降的向量化
    • Chapter6
      • 6-6 随机梯度下降
    • Chapter6
      • 6-7 代码实现随机梯度下降
    • Chapter6
      • 6-8 调试梯度下降法
    • Chapter6
      • 6-9 有关梯度下降法的更多深入讨论
    • Chapter7
      • 主成分分析法 PCA Principal Component Analysis
    • Chapter7
      • 7-1
    • Chapter7
      • 7-2 使用梯度上升法求解主成分分析问题
    • Chapter7
      • 7-3 代码实现主成分分析问题
    • Chapter7
      • 7-4 求数据的前N个主成分
    • Chapter7
      • 7-5 高维数据向低维数据映射
    • Chapter7
      • 7-6 scikit learn中的PCA
    • Chapter7
      • 7-7 MNIST数据集
    • Chapter7
      • 7-8 使用PCA降噪
    • Chapter7
      • 7-9 人脸识别和特征脸(未完成)
    • Chapter8
      • 第八章:多项式回归与模型泛化
    • Chapter8
      • 8-10 L1,L2和弹性网络
    • Chapter8
      • 8-2 scikit-learn中的多项式回归和pipeline
    • Chapter8
      • 8-3 过拟合和欠拟合
    • Chapter8
      • 8-4 为什么要训练数据集和测试数据集
    • Chapter8
      • 8-5 学习曲线
    • Chapter8
      • 8-6 验证数据集与交叉验证
    • Chapter8
      • 8-7 偏差方差权衡 Bias Variance Trade off
    • Chapter8
      • 8-8 模型正则化 Regularization
    • Chapter8
      • 8-9 LASSO Regularization
    • Chapter9
      • 第九章:逻辑回归
    • Chapter9
      • 9-2 逻辑回归的损失函数
    • Chapter9
      • 9-3 逻辑回归算法损失函数的梯度
    • Chapter9
      • 9-4 实现逻辑回归算法
    • Chapter9
      • 9-5 决策边界
    • Chapter9
      • 9-6 在逻辑回归中使用多项式特征
    • Chapter9
      • 9-7 scikit-learn中的逻辑回归
    • Chapter9
      • 9-8 OvR与OvO
Powered by GitBook
On this page
  • 问:求出第一主成分以后,如何求出下一主成分呢?
  • 准备数据
  • 第一步:demean
  • 第二步:梯度上升法
  • 训练和绘制结果
  • 第三步:去掉第一个主成分
  • 方法一:
  • 方法二:
  • 去掉第一主成分后的数据
  • 第四步:求新数据的第一主成分
  • 封装成函数
  1. src
  2. Chapter7

7-4 求数据的前N个主成分

PreviousChapter7NextChapter7

Last updated 4 years ago

本质上是从一组坐标第转移到了另一组坐标系。 原来的坐标系有n个方向,那么新的坐标系也应该有n个方向。 7-2中的算法只是求出第一个轴的方向。

在新的坐标系中,第一个轴保存了样本最大的方差,称为第一个主成分。 第二个次之,依此类推。

问:求出第一主成分以后,如何求出下一主成分呢?

答: 第一步: 改变数据,将数据的第一个主成分去掉。 图中X'是X去除了第一主成分上的分量后的结果 第二步: 在新数据上求第一主成分

准备数据

import numpy as np
import matplotlib.pyplot as plt

X = np.empty((100, 2))
X[:,0] = np.random.uniform(0., 100, size=100)
X[:,1] = 0.75 * X[:, 0] + 3. + np.random.normal(0, 10., size=100)

plt.scatter(X[:,0], X[:,1])
plt.show()

第一步:demean

def demean(X):
    return X - np.mean(X, axis=0)

X_demean = demean(X)
plt.scatter(X_demean[:,0], X_demean[:,1])
plt.show()

第二步:梯度上升法

def f(w, X):
    return np.sum((X.dot(w)**2)) / len(X)

def df(w, X):
    return X.T.dot(X.dot(w)) * 2. / len(X)

# 把向量单位化
def direction(w):
    return w / np.linalg.norm(w)

def first_component(X, initial_w, eta, n_iters=1e4, epsilon=1e-8):
    w = direction(initial_w)
    cur_iter = 0
    while cur_iter < n_iters:
        gradient = df(w, X)
        last_w = w
        w = w + eta * gradient
        w = direction(w)
        if(abs(f(w, X)) - abs(f(last_w, X)) < epsilon):
           break
        cur_iter += 1
    return w

训练和绘制结果

initial_w = np.random.random(X.shape[1])
eta = 0.001
w = first_component(X_demean, initial_w, eta)

输入:w 输出:array([0.77135006, 0.63641109])

第三步:去掉第一个主成分

方法一:

X2 = np.empty(X.shape)
for i in range(len(X)):
   X2[i] = X[i] - X[i].dot(w) * w

方法二:

X2 = X - X.dot(w).reshape(-1, 1) * w

去掉第一主成分后的数据

plt.scatter(X2[:,0], X2[:,1])
plt.show()

第四步:求新数据的第一主成分

w2 = first_component(X2, initial_w, eta)

输入:w2 输出:array([-0.63639346, 0.77136461])

输入:w.dot(w2) 输出:2.2857453091384983e-05 点乘结果几乎为0,说明w和w2是垂直关系

封装成函数

def first_n_component(n, X, eta = 0.01, n_iters=1e4, epsilon=1e-8):
    X_pca = X.copy()
    X_pca = demean(X_pca)
    res = []
    for i in range(n):
        initial_w = np.random.random(X.shape[1])
        eta = 0.001
        w = first_component(X_pca, initial_w, eta)
        res.append(w)
        X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w
    return res

输入:first_n_component(2, X) 输出:[array([0.77135082, 0.63641018]), array([ 0.63642749, -0.77133653])] [?]遗留问题:我算出的第二个主成分的方向和视频中是反的? 可能是跟initial_w有关,多次运行后发现两个方向的结果都有。