📔
liu_yu_bo_play_with_machine_learning
  • README
  • src
    • Introduction
    • Summary
    • Chapter10
      • 第十章:评价分类结果
    • Chapter10
      • 10-2 精确率和召回率
    • Chapter10
      • 10-3 实现混淆矩阵、精准率、召回率
    • Chapter10
      • 10-4 F1 score
    • Chapter10
      • 10-5 Precision-Recall平衡
    • Chapter10
      • 10-6 precision-recall曲线
    • Chapter10
      • 10-7 ROC曲线
    • Chapter10
      • 10-8 多分类问题中的混淆矩阵
    • Chapter11
      • 11-1 什么是支撑向量机
    • Chapter11
      • 11-2 支撑向量机的推导过程
    • Chapter11
      • 11-3 Soft Margin和SVM的正则化
    • Chapter11
      • 11-4 scikit-leran中的SVM
    • Chapter11
      • 11-5 SVM中使用多项式特征
    • Chapter11
      • 11-6 什么是核函数
    • Chapter11
      • 11-7 高斯核函数
    • Chapter11
      • 11-8 scikit-learn中的高斯核函数
    • Chapter11
      • 11-9 SVM思想解决回归问题
    • Chapter12
      • 第十二章:决策树
    • Chapter12
      • 12-2 信息熵
    • Chapter12
      • 12-3 使用信息寻找最优划分
    • Chapter12
      • 12-4 基尼系数
    • Chapter12
      • 12-5 CART和决策树中的超参数
    • Chapter12
      • 12-6 决策树解决回归问题
    • Chapter12
      • 12-7 决策树的局限性
    • Chapter13
      • 第十三章:集成学习和随机森林
    • Chapter13
      • 13-2 soft voting
    • Chapter13
      • 13-3 bagging和pasting
    • Chapter13
      • 13-4 更多关于bagging的讨论
    • Chapter13
      • 13-5 随机森林和extra-trees
    • Chapter13
      • 13-6 ada boosting和gradiesnt boosting
    • Chapter13
      • 13-7 Stacking
    • Chapter4
      • KNN - K近邻算法 - K-Nearest Neighbors
    • Chapter4
      • 4-1
    • Chapter4
      • 4-2
    • Chapter4
      • 4-3 训练数据集,测试数据集
    • Chapter4
      • 4-4 分类准确度
    • Chapter4
      • 4-5
    • Chapter4
      • 4-6 网格搜索
    • Chapter4
      • 4-7
    • Chapter4
      • 4-8 scikit-learn中的Scaler
    • Chapter4
      • 4-9 更多有关K近邻算法的思考
    • Chapter5
      • 线性回归算法
    • Chapter5
      • 5-1
    • Chapter5
      • 5-10 线性回归的可解释性和更多思考
    • Chapter5
      • 5-2 最小二乘法
    • Chapter5
      • 5-3 简单线性回归的实现
    • Chapter5
      • 5-4 参数计算向量化
    • Chapter5
      • 5-5 衡量线性回归算法的指标
    • Chapter5
      • 5-6 最好的衡量线性回归法的指标 R Squared
    • Chapter5
      • 5-7 简单线性回归和正规方程解
    • Chapter5
      • 5-8 实现多元线性回归
    • Chapter5
      • 5-9 scikit-learn中的回归算法
    • Chapter6
      • 第六章:梯度下降法
    • Chapter6
      • 6-2 模拟实现梯度下降法
    • Chapter6
      • 6-3 多元线性回归中的梯度下降法
    • Chapter6
      • 6-4 在线性回归模型中使用梯度下降法
    • Chapter6
      • 6-5 梯度下降的向量化
    • Chapter6
      • 6-6 随机梯度下降
    • Chapter6
      • 6-7 代码实现随机梯度下降
    • Chapter6
      • 6-8 调试梯度下降法
    • Chapter6
      • 6-9 有关梯度下降法的更多深入讨论
    • Chapter7
      • 主成分分析法 PCA Principal Component Analysis
    • Chapter7
      • 7-1
    • Chapter7
      • 7-2 使用梯度上升法求解主成分分析问题
    • Chapter7
      • 7-3 代码实现主成分分析问题
    • Chapter7
      • 7-4 求数据的前N个主成分
    • Chapter7
      • 7-5 高维数据向低维数据映射
    • Chapter7
      • 7-6 scikit learn中的PCA
    • Chapter7
      • 7-7 MNIST数据集
    • Chapter7
      • 7-8 使用PCA降噪
    • Chapter7
      • 7-9 人脸识别和特征脸(未完成)
    • Chapter8
      • 第八章:多项式回归与模型泛化
    • Chapter8
      • 8-10 L1,L2和弹性网络
    • Chapter8
      • 8-2 scikit-learn中的多项式回归和pipeline
    • Chapter8
      • 8-3 过拟合和欠拟合
    • Chapter8
      • 8-4 为什么要训练数据集和测试数据集
    • Chapter8
      • 8-5 学习曲线
    • Chapter8
      • 8-6 验证数据集与交叉验证
    • Chapter8
      • 8-7 偏差方差权衡 Bias Variance Trade off
    • Chapter8
      • 8-8 模型正则化 Regularization
    • Chapter8
      • 8-9 LASSO Regularization
    • Chapter9
      • 第九章:逻辑回归
    • Chapter9
      • 9-2 逻辑回归的损失函数
    • Chapter9
      • 9-3 逻辑回归算法损失函数的梯度
    • Chapter9
      • 9-4 实现逻辑回归算法
    • Chapter9
      • 9-5 决策边界
    • Chapter9
      • 9-6 在逻辑回归中使用多项式特征
    • Chapter9
      • 9-7 scikit-learn中的逻辑回归
    • Chapter9
      • 9-8 OvR与OvO
Powered by GitBook
On this page
  • 学习曲线
  • 欠拟合、拟合、过拟合和学习曲线图对比
  • 线性回归,欠拟合
  • 2阶多项式回归,拟合
  • 20阶多项式回归,过拟合
  • 总结
  1. src
  2. Chapter8

8-5 学习曲线

PreviousChapter8NextChapter8

Last updated 5 years ago

这是8-4中提到的模型复杂度曲线。用于说明过拟合和欠拟合。 还有另一种曲线,也可以可视化地表达过拟合与欠拟合的情况,即学习曲线。

学习曲线

随着训练样本的逐渐增多,算法训练出的模型的表现能力。

欠拟合、拟合、过拟合和学习曲线图对比

仍使用8-4中的数据

绘制学习曲线的函数如下:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

def plot_learning_curve(algo, X_train, X_test, y_train, y_test):
    train_score = []
    test_score = []
    for i in range(1, len(X_train)+1):
        algo.fit(X_train[:i], y_train[:i])
        y_train_predict = algo.predict(X_train[:i])
        train_score.append(mean_squared_error(y_train[:i], y_train_predict))
        y_test_predict = algo.predict(X_test)
        test_score.append(mean_squared_error(y_test, y_test_predict))

    plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(train_score), label="train")
    plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(test_score), label="test")
    plt.legend()
    plt.axis([0, len(X_train)+1, 0, 4])
    plt.show()

线性回归,欠拟合

plot_learning_curve( LinearRegression(), X_train, X_test, y_train, y_test)

在训练数据集上,误差逐渐升高。 刚开始,误差累积较快,到后面误差累积变慢。 在测试数据集上,刚开始误差很大,逐渐减小,减小到一定程度后达到相对稳定。 最终,训练误差与测试误差趋于大体相同。测试误差略高于训练误差。

2阶多项式回归,拟合

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression

def PolynomialRegression(degree):
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", LinearRegression())
    ])

plot_learning_curve( PolynomialRegression(degree=2), X_train, X_test, y_train, y_test)

整体趋势与使用线性回归的图像是一致的。 区别在于,线性回归模型中训练误差和测试误差稳定在1.7左右 而2阶多项式回归模型中训练误差和测试误差稳定在1.0左右 这说明使用2阶多项式回归的结果是比较好的。

20阶多项式回归,过拟合

plot_learning_curve( PolynomialRegression(degree=20), X_train, X_test, y_train, y_test)

整体趋势仍然是train逐渐上升,test逐渐下降,最终趋于稳定。 在区别是,在train和test都比较稳定时,它们之间的差距是比较大。 这就说明模型虽然在训练数据集上拟合得非常好,但是在测试数据集上误差仍然很大。 这种情况通常就是过拟合。

总结

欠拟合情况和最佳情况相比,欠拟合情况train、test曲线趋于稳定的位置比最佳情况的要高一些。这是因为模型选择得不对,所以即使在训练数据集上误差也很大。 对于过拟合情况,train曲线和最佳情况差不多,但test曲线比较高,并且train与test之间的差距比较大。